ترغب بنشر مسار تعليمي؟ اضغط هنا

Gyrokinetic simulations in stellarators using different computational domains

99   0   0.0 ( 0 )
 نشر من قبل Edilberto S\\'anchez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we compare gyrokinetic simulations in stellarators using different computational domains, namely, flux tube, full-flux-surface, and radially global domains. Two problems are studied: the linear relaxation of zonal flows and the linear stability of ion temperature gradient (ITG) modes. Simulations are carried out with the codes EUTERPE, GENE, GENE-3D, and stella in magnetic configurations of LHD and W7-X using adiabatic electrons. The zonal flow relaxation properties obtained in different flux tubes are found to differ with each other and with the radially global result, except for sufficiently long flux tubes, in general. The flux tube length required for convergence is configuration-dependent. Similarly, for ITG instabilities, different flux tubes provide different results, but the discrepancy between them diminishes with increasing flux tube length. Full-flux-surface and flux tube simulations show good agreement in the calculation of the growth rate and frequency of the most unstable modes in LHD, while for W7-X differences in the growth rates are found between the flux tube and the full-flux-surface domains. Radially global simulations provide results close to the full-flux-surface ones. The radial scale of unstable ITG modes is studied in global and flux tube simulations finding that in W7-X, the radial scale of the most unstable modes depends on the binormal wavenumber, while in LHD no clear dependency is found.



قيم البحث

اقرأ أيضاً

634 - I. G. Abel 2009
A new analytically and numerically manageable model collision operator is developed specifically for turbulence simulations. The like-particle collision operator includes both pitch-angle scattering and energy diffusion and satisfies the physical con straints required for collision operators: it conserves particles, momentum and energy, obeys Boltzmanns H-theorem (collisions cannot decrease entropy), vanishes on a Maxwellian, and efficiently dissipates small-scale structure in the velocity space. The process of transforming this collision operator into the gyroaveraged form for use in gyrokinetic simulations is detailed. The gyroaveraged model operator is shown to have more suitable behavior at small scales in phase space than previously suggested models. A model operator for electron-ion collisions is also presented.
Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-$J$ geometry) are partly resil ient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment (NCSX) and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-$J$ configurations.
Two-fluid Braginskii codes have simulated open-field line turbulence for over a decade, and only recently has it become possible to study these systems with continuum gyrokinetic codes. This work presents a first-of-its-kind comparison between fluid and (long-wavelength) gyrokinetic models in open field-lines, using the GDB and Gkeyll codes to simulate interchange turbulence in the Helimak device at the University of Texas (T. N. Bernard, et. al., Phys. of Plasmas 26, 042301 (2019)). Partial agreement is attained in a number of diagnostic channels when the GDB sources and sheath boundary conditions (BCs) are selected carefully, especially the heat-flux BCs which can drastically alter the temperature. The radial profile of the fluctuation levels is qualitatively similar and quantitatively comparable on the low-field side, although statistics such as moments of the probability density function and the high-frequency spectrum show greater differences. This comparison indicates areas for future improvement in both simulations, such as sheath BCs, as well as improvements in GDB like particle conservation and spatially varying thermal conductivity, in order to achieve better fluid-gyrokinetic agreement and increase fidelity when simulating experiments.
Magnetic confinement fusion reactors suffer severely from heat and particle losses through turbulent transport, which has inspired the construction of ever larger and more expensive reactors. Numerical simulations are vital to their design and operat ion, but particle collisions are too infrequent for fluid descriptions to be valid. Instead, strongly magnetised fusion plasmas are described by the gyrokinetic equations, a nonlinear integro-differential system for evolving the particle distribution functions in a five-dimensional position and velocity space, and the consequent electromagnetic field. Due to the high dimensionality, simulations of small reactor sections require hundreds of thousands of CPU hours on High Performance Computing platforms. We develop a Hankel-Hermite spectral representation for velocity space that exploits structural features of the gyrokinetic system. The representation exactly conserves discrete free energy in the absence of explicit dissipation, while our Hermite hypercollision operator captures Landau damping with few variables. Calculation of the electromagnetic fields becomes purely local, eliminating inter-processor communication in, and vastly accelerating, searches for linear instabilities. We implement these ideas in SpectroGK, an efficient parallel code. Turbulent fusion plasmas may dissipate free energy through linear phase mixing to fine scales in velocity space, as in Landau damping, or through a nonlinear cascade to fine scales in physical space, as in hydrodynamic turbulence. Using SpectroGK to study saturated electrostatic drift-kinetic turbulence, we find that the nonlinear cascade suppresses linear phase mixing at energetically-dominant scales, so the turbulence is fluid-like. We use this observation to derive Fourier-Hermite spectra for the electrostatic potential and distribution function, and confirm these spectra with simulations.
In order to predict and analyze turbulent transport in tokamaks, it is important to model transport that arises from microinstabilities. For this task, quasilinear codes have been developed that seek to calculate particle, angular momentum, and heat fluxes both quickly and accurately. In this tutorial, we present a derivation of one such code known as QuaLiKiz, a quasilinear gyrokinetic transport code. The goal of this derivation is to provide a self-contained and complete description of the underlying physics and mathematics of QuaLiKiz from first principles. This work serves both as a comprehensive overview of QuaLiKiz specifically as well as an illustration for deriving quasilinear models in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا