ﻻ يوجد ملخص باللغة العربية
We study the effects of gauge-symmetry breaking (GSB) perturbations in three-dimensional lattice gauge theories with scalar fields. We study this issue at transitions in which gauge correlations are not critical and the gauge symmetry only selects the gauge-invariant scalar degrees of freedom that become critical. A paradigmatic model in which this behavior is realized is the lattice CP(1) model or, more generally, the lattice Abelian-Higgs model with two-component complex scalar fields and compact gauge fields. We consider this model in the presence of a linear GSB perturbation. The gauge symmetry turns out to be quite robust with respect to the GSB perturbation: the continuum limit is gauge-invariant also in the presence of a finite small GSB term. We also determine the phase diagram of the model. It has one disordered phase and two phases that are tensor and vector ordered, respectively. They are separated by continuous transition lines, which belong to the O(3), O(4), and O(2) vector universality classes, and which meet at a multicritical point. We remark that the behavior at the CP(1) gauge-symmetric critical point substantially differs from that at transitions in which gauge correlations become critical, for instance at transitions in the noncompact lattice Abelian-Higgs model that are controlled by the charged fixed point: in this case the behavior is extremely sensitive to GSB perturbations.
We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model, we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a noncompact gauge field, which is invariant under
By evaluating the so-called Bose-ghost propagator, we present the first numerical evidence of BRST-symmetry breaking for Yang-Mills theory in minimal Landau gauge, i.e. due to the restriction of the functional integration to the first Gribov region i
We consider two-dimensional lattice SU($N_c$) gauge theories with $N_f$ real scalar fields transforming in the adjoint representation of the gauge group and with a global O($N_f$) invariance. Focusing on systems with $N_fge 3$, we study their zero-te
We consider three-dimensional lattice SU($N_c$) gauge theories with multiflavor ($N_f>1$) scalar fields in the adjoint representation. We investigate their phase diagram, identify the different Higgs phases with their gauge-symmetry pattern, and dete
QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at $T<T_c$ creates electric confinement and flux tubes. The magnetic scenario of QCD proposes that scattering on the non-condensed component of the monopole