ﻻ يوجد ملخص باللغة العربية
Crowdsourced live video streaming (livecast) services such as Facebook Live, YouNow, Douyu and Twitch are gaining more momentum recently. Allocating the limited resources in a cost-effective manner while maximizing the Quality of Service (QoS) through real-time delivery and the provision of the appropriate representations for all viewers is a challenging problem. In our paper, we introduce a machine-learning based predictive resource allocation framework for geo-distributed cloud sites, considering the delay and quality constraints to guarantee the maximum QoS for viewers and the minimum cost for content providers. First, we present an offline optimization that decides the required transcoding resources in distributed regions near the viewers with a trade-off between the QoS and the overall cost. Second, we use machine learning to build forecasting models that proactively predict the approximate transcoding resources to be reserved at each cloud site ahead of time. Finally, we develop a Greedy Nearest and Cheapest algorithm (GNCA) to perform the resource allocation of real-time broadcasted videos on the rented resources. Extensive simulations have shown that GNCA outperforms the state-of-the art resource allocation approaches for crowdsourced live streaming by achieving more than 20% gain in terms of system cost while serving the viewers with relatively lower latency.
Internet of Things (IoT) is an Internet-based environment of connected devices and applications. IoT creates an environment where physical devices and sensors are flawlessly combined into information nodes to deliver innovative and smart services for
Geo-distributed private chain and database have created higher performance requirements for consistency models. However, with millisecond network latency between nodes, the widely used leader-based SMR models cause frequent retransmission of logs sin
Combining underline{v}ideo streaming and online underline{r}etailing (V2R) has been a growing trend recently. In this paper, we provide practitioners and researchers in multimedia with a cloud-based platform named Hysia for easy development and deplo
We present a system for streaming live entertainment content over the Internet originating from a single source to a scalable number of consumers without resorting to centralised or provider- provisioned resources. The system creates a peer-to-peer o
We consider assignment policies that allocate resources to users, where both resources and users are located on a one-dimensional line. First, we consider unidirectional assignment policies that allocate resources only to users located to their left.