ﻻ يوجد ملخص باللغة العربية
We developed Distilled Graph Attention Policy Networks (DGAPNs), a curiosity-driven reinforcement learning model to generate novel graph-structured chemical representations that optimize user-defined objectives by efficiently navigating a physically constrained domain. The framework is examined on the task of generating molecules that are designed to bind, noncovalently, to functional sites of SARS-CoV-2 proteins. We present a spatial Graph Attention Network (sGAT) that leverages self-attention over both node and edge attributes as well as encoding spatial structure -- this capability is of considerable interest in areas such as molecular and synthetic biology and drug discovery. An attentional policy network is then introduced to learn decision rules for a dynamic, fragment-based chemical environment, and state-of-the-art policy gradient techniques are employed to train the network with enhanced stability. Exploration is efficiently encouraged by incorporating innovation reward bonuses learned and proposed by random network distillation. In experiments, our framework achieved outstanding results compared to state-of-the-art algorithms, while increasing the diversity of proposed molecules and reducing the complexity of paths to chemical synthesis.
Ride-hailing demand prediction is an essential task in spatial-temporal data mining. Accurate Ride-hailing demand prediction can help to pre-allocate resources, improve vehicle utilization and user experiences. Graph Convolutional Networks (GCN) is c
Drug-drug interaction(DDI) prediction is an important task in the medical health machine learning community. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brev
In many real-world scenarios where extrinsic rewards to the agent are extremely sparse, curiosity has emerged as a useful concept providing intrinsic rewards that enable the agent to explore its environment and acquire information to achieve its goal
Motivation: Predicting Drug-Target Interaction (DTI) is a well-studied topic in bioinformatics due to its relevance in the fields of proteomics and pharmaceutical research. Although many machine learning methods have been successfully applied in this
In the past several months, COVID-19 has spread over the globe and caused severe damage to the people and the society. In the context of this severe situation, an effective drug discovery method to generate potential drugs is extremely meaningful. In