ترغب بنشر مسار تعليمي؟ اضغط هنا

A Provably-Efficient Model-Free Algorithm for Constrained Markov Decision Processes

160   0   0.0 ( 0 )
 نشر من قبل Honghao Wei
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the first {em model-free}, {em simulator-free} reinforcement learning algorithm for Constrained Markov Decision Processes (CMDPs) with sublinear regret and zero constraint violation. The algorithm is named Triple-Q because it has three key components: a Q-function (also called action-value function) for the cumulative reward, a Q-function for the cumulative utility for the constraint, and a virtual-Queue that (over)-estimates the cumulative constraint violation. Under Triple-Q, at each step, an action is chosen based on the pseudo-Q-value that is a combination of the three Q values. The algorithm updates the reward and utility Q-values with learning rates that depend on the visit counts to the corresponding (state, action) pairs and are periodically reset. In the episodic CMDP setting, Triple-Q achieves $tilde{cal O}left(frac{1 }{delta}H^4 S^{frac{1}{2}}A^{frac{1}{2}}K^{frac{4}{5}} right)$ regret, where $K$ is the total number of episodes, $H$ is the number of steps in each episode, $S$ is the number of states, $A$ is the number of actions, and $delta$ is Slaters constant. Furthermore, Triple-Q guarantees zero constraint violation when $K$ is sufficiently large. Finally, the computational complexity of Triple-Q is similar to SARSA for unconstrained MDPs and is computationally efficient.



قيم البحث

اقرأ أيضاً

The success of deep reinforcement learning (DRL) is due to the power of learning a representation that is suitable for the underlying exploration and exploitation task. However, existing provable reinforcement learning algorithms with linear function approximation often assume the feature representation is known and fixed. In order to understand how representation learning can improve the efficiency of RL, we study representation learning for a class of low-rank Markov Decision Processes (MDPs) where the transition kernel can be represented in a bilinear form. We propose a provably efficient algorithm called ReLEX that can simultaneously learn the representation and perform exploration. We show that ReLEX always performs no worse than a state-of-the-art algorithm without representation learning, and will be strictly better in terms of sample efficiency if the function class of representations enjoys a certain mild coverage property over the whole state-action space.
We study reinforcement learning for the optimal control of Branching Markov Decision Processes (BMDPs), a natural extension of (multitype) Branching Markov Chains (BMCs). The state of a (discrete-time) BMCs is a collection of entities of various type s that, while spawning other entities, generate a payoff. In comparison with BMCs, where the evolution of a each entity of the same type follows the same probabilistic pattern, BMDPs allow an external controller to pick from a range of options. This permits us to study the best/worst behaviour of the system. We generalise model-free reinforcement learning techniques to compute an optimal control strategy of an unknown BMDP in the limit. We present results of an implementation that demonstrate the practicality of the approach.
Model-free reinforcement learning is known to be memory and computation efficient and more amendable to large scale problems. In this paper, two model-free algorithms are introduced for learning infinite-horizon average-reward Markov Decision Process es (MDPs). The first algorithm reduces the problem to the discounted-reward version and achieves $mathcal{O}(T^{2/3})$ regret after $T$ steps, under the minimal assumption of weakly communicating MDPs. To our knowledge, this is the first model-free algorithm for general MDPs in this setting. The second algorithm makes use of recent advances in adaptive algorithms for adversarial multi-armed bandits and improves the regret to $mathcal{O}(sqrt{T})$, albeit with a stronger ergodic assumption. This result significantly improves over the $mathcal{O}(T^{3/4})$ regret achieved by the only existing model-free algorithm by Abbasi-Yadkori et al. (2019a) for ergodic MDPs in the infinite-horizon average-reward setting.
In this paper we present a novel method for learning hierarchical representations of Markov decision processes. Our method works by partitioning the state space into subsets, and defines subtasks for performing transitions between the partitions. We formulate the problem of partitioning the state space as an optimization problem that can be solved using gradient descent given a set of sampled trajectories, making our method suitable for high-dimensional problems with large state spaces. We empirically validate the method, by showing that it can successfully learn a useful hierarchical representation in a navigation domain. Once learned, the hierarchical representation can be used to solve different tasks in the given domain, thus generalizing knowledge across tasks.
Value iteration is a well-known method of solving Markov Decision Processes (MDPs) that is simple to implement and boasts strong theoretical convergence guarantees. However, the computational cost of value iteration quickly becomes infeasible as the size of the state space increases. Various methods have been proposed to overcome this issue for value iteration in large state and action space MDPs, often at the price, however, of generalizability and algorithmic simplicity. In this paper, we propose an intuitive algorithm for solving MDPs that reduces the cost of value iteration updates by dynamically grouping together states with similar cost-to-go values. We also prove that our algorithm converges almost surely to within (2varepsilon / (1 - gamma)) of the true optimal value in the (ell^infty) norm, where (gamma) is the discount factor and aggregated states differ by at most (varepsilon). Numerical experiments on a variety of simulated environments confirm the robustness of our algorithm and its ability to solve MDPs with much cheaper updates especially as the scale of the MDP problem increases.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا