ﻻ يوجد ملخص باللغة العربية
Layered transition metal dichalcogenides (TMDCs) host a plethora of interesting physical phenomena ranging from charge order to superconductivity. By introducing magnetic ions into 2H-NbS$_2$, the material forms a family of magnetic intercalated TMDCs T$_x$NbS$_2$ (T = 3d transition metal). Recently, Fe$_{1/3+delta}$NbS$_2$ has been found to possess intriguing resistance switching and magnetic memory effects coupled to the N{e}el temperature of T$_N sim 45$ K [1,2]. We present comprehensive single crystal neutron diffraction measurements on under-intercalated ($delta sim -0.01$), stoichiometric, and over-intercalated ($delta sim 0.01$) samples. Magnetic defects are usually considered to suppress magnetic correlations and, concomitantly, transition temperatures. Instead, we observe highly tunable magnetic long-ranged states as the Fe concentration is varied from under-intercalated to over-intercalated, that is from Fe vacancies to Fe interstitials. The under- and over- intercalated samples reveal distinct antiferromagnetic stripe and zig-zag orders, associated with wave vectors $k_1$ = (0.5, 0, 0) and $k_2$ = (0.25, 0.5, 0), respectively. The stoichiometric sample shows two successive magnetic phase transitions for these two wave vectors with an unusual rise-and-fall feature in the intensities connected to $k_1$. We ascribe this sensitive tunability to the competing next nearest neighbor exchange interactions and the oscillatory nature of the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism. We discuss experimental observations that relate to the observed intriguing switching resistance behaviors. Our discovery of a magnetic defect tuning of the magnetic structure in bulk crystals Fe$_{1/3+delta}$NbS$_2$ provides a possible new avenue to implement controllable antiferromagnetic spintronic devices.
Transition-metal dichalcogenide IrTe2 has attracted attention because of striped lattice, charge ordering and superconductivity. We have investigated the surface structure of IrTe2, using low energy electron diffraction (LEED) and scanning tunneling
The crystal structure of a disordered form of Cr$_{1/3}$NbS$_2$ has been characterized using diffraction and inelastic scattering of synchrotron radiation. In contrast to the previously reported symmetry (P6$_3$22), the crystal can be described by a
We report a rectangular charge density wave (CDW) phase in strained 1T-VSe$_2$ thin films synthesized by molecular beam epitaxy on c-sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4a{times}{sqrt{3a}} periodicit
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. These fermions with linear dispersions near
Using first-principles calculations, we investigate six transition-metal nitride halides (TMNHs): HfNBr, HfNCl, TiNBr, TiNCl, ZrNBr, and ZrNCl as potential van der Waals (vdW) dielectrics for transition metal dichalcogenide (TMD) channel transistors.