ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition-Metal Nitride Halide Dielectrics for Transition-Metal Dichalcogenide Transistors

129   0   0.0 ( 0 )
 نشر من قبل Mehrdad Rostami
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using first-principles calculations, we investigate six transition-metal nitride halides (TMNHs): HfNBr, HfNCl, TiNBr, TiNCl, ZrNBr, and ZrNCl as potential van der Waals (vdW) dielectrics for transition metal dichalcogenide (TMD) channel transistors. We calculate the exfoliation energies and bulk phonon energies and find that the six TMNHs are exfoliable and thermodynamically stable. We calculate both the optical and static dielectric constants in the in-plane and out-of-plane directions for both monolayer and bulk TMNHs. In monolayers, the out-of-plane static dielectric constant ranges from 5.04 (ZrNCl) to 6.03 (ZrNBr) whereas in-plane dielectric constants range from 13.18 (HfNBr) to 74.52 (TiNCl). We show that the bandgap of TMNHs ranges from 1.53 eV (TiNBr) to 3.36 eV (HfNCl) whereas the affinity ranges from 4.01 eV (HfNBr) to 5.60 eV (TiNCl). Finally, we estimate the dielectric leakage current density of transistors with six TMNH monolayer dielectrics with five monolayer channel TMDs (MoS2, MoSe2, MoTe2, WS2, and WSe2). For p-MOS TMD channel transistors, 19 out of 30 combinations have a smaller leakage current compared to monolayer hexagonal boron nitride (hBN), a well-known vdW dielectric. The smallest monolayer leakage current of 2.14*10-9 A/cm2 is predicted for a p-MOS WS2 transistor with HfNCl as a gate dielectric. HfNBr, HfNCl, ZrNBr, and ZrNCl are also predicted to yield small leakage currents in certain p-MOS TMD transistors.

قيم البحث

اقرأ أيضاً

Transition-metal dichalcogenides (TMDCs) are important class of two-dimensional (2D) layered materials for electronic and optoelectronic applications, due to their ultimate body thickness, sizable and tunable bandgap, and decent theoretical room-temp erature mobility of hundreds to thousands cm2/Vs. So far, however, all TMDCs show much lower mobility experimentally because of the collective effects by foreign impurities, which has become one of the most important limitations for their device applications. Here, taking MoS2 as an example, we review the key factors that bring down the mobility in TMDC transistors, including phonons, charged impurities, defects, and charge traps. We introduce a theoretical model that quantitatively captures the scaling of mobility with temperature, carrier density and thickness. By fitting the available mobility data from literature over the past few years, we are able to obtain the density of impurities and traps for a wide range of transistor structures. We show that interface engineering such as oxide surface passivation, high-k dielectrics and BN encapsulation could effectively reduce the impurities, leading to improved device performances. For few-layer TMDCs, we analytically model the lopsided carrier distribution to elucidate the experimental increase of mobility with the number of layers. From our analysis, it is clear that the charge transport in TMDC samples is a very complex problem that must be handled carefully. We hope that this Review can provide new insights and serve as a starting point for further improving the performance of TMDC transistors.
When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. Research on transition metal dichalcogenide (TMD) semiconductors has recently progressed towards the realisation of working devices, which involve light-emitting diodes, nanocavity lasers, and single-photon emitters. In these two-dimensional atomically thin semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab-initio band-structure and many-body theory predicts carrier relaxation on a 50-fs time scale, which is less than an order of magnitude faster than in quantum wells. These scattering times compete with the recently reported sub-ps exciton recombination times, thus making it harder to achieve population inversion and lasing.
82 - C. Robert , D. Lagarde , F. Cadiz 2016
We have investigated the exciton dynamics in transition metal dichalcogenide mono-layers using time-resolved photoluminescence experiments performed with optimized time-resolution. For MoSe2 monolayers, we measure $tau_{rad}=1.8pm0.2$ ps that we inte rpret as the intrinsic radiative recombination time. Similar values are found for WSe2 mono-layers. Our detailed analysis suggests the following scenario: at low temperature (T $leq$ 50 K), the exciton oscillator strength is so large that the entire light can be emitted before the time required for the establishment of a thermalized exciton distribution. For higher lattice temperatures, the photoluminescence dynamics is characterized by two regimes with very different characteristic times. First the PL intensity drops drastically with a decay time in the range of the picosecond driven by the escape of excitons from the radiative window due to exciton- phonon interactions. Following this first non-thermal regime, a thermalized exciton population is established gradually yielding longer photoluminescence decay times in the nanosecond range. Both the exciton effective radiative recombination and non-radiative recombination channels including exciton-exciton annihilation control the latter. Finally the temperature dependence of the measured exciton and trion dynamics indicates that the two populations are not in thermodynamical equilibrium.
103 - Chen Chen , Jisun Kim , Yifan Yang 2016
Transition-metal dichalcogenide IrTe2 has attracted attention because of striped lattice, charge ordering and superconductivity. We have investigated the surface structure of IrTe2, using low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). A complex striped lattice modulations as a function of temperature is observed, which shows hysteresis between cooling and warming. While the bulk 5x1 and 8x1 phases appear at high temperatures, the surface ground state has the 6x1 phase, not seen in the bulk, and the surface transition temperatures are distinct from the bulk. The broken symmetry at the surface creates a quite different phase diagram, with the coexistence of several periodicities resembling devils staircase behavior.
87 - Yusong Bai , Lin Zhou , Jue Wang 2019
The formation of interfacial moire patterns from angular and/or lattice mismatch has become a powerful approach to engineer a range of quantum phenomena in van der Waals heterostructures. For long-lived and valley-polarized interlayer excitons in tra nsition-metal dichalcogenide (TMDC) heterobilayers, signatures of quantum confinement by the moire landscape have been reported in recent experimental studies. Such moire confinement has offered the exciting possibility to tailor new excitonic systems, such as ordered arrays of zero-dimensional (0D) quantum emitters and their coupling into topological superlattices. A remarkable nature of the moire potential is its dramatic response to strain, where a small uniaxial strain can tune the array of quantum-dot-like 0D traps into parallel stripes of one-dimensional (1D) quantum wires. Here, we present direct evidence for the 1D moire potentials from real space imaging and the corresponding 1D moire excitons from photoluminescence (PL) emission in MoSe2/WSe2 heterobilayers. Whereas the 0D moire excitons display quantum emitter-like sharp PL peaks with circular polarization, the PL emission from 1D moire excitons has linear polarization and two orders of magnitude higher intensity. The results presented here establish strain engineering as a powerful new method to tailor moire potentials as well as their optical and electronic responses on demand.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا