ترغب بنشر مسار تعليمي؟ اضغط هنا

ODE/IQFT correspondence for the generalized affine $mathfrak{ sl}(2)$ Gaudin model

69   0   0.0 ( 0 )
 نشر من قبل Gleb Kotousov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An integrable system is introduced, which is a generalization of the $mathfrak{sl}(2)$ quantum affine Gaudin model. Among other things, the Hamiltonians are constructed and their spectrum is calculated within the ODE/IQFT approach. The model fits within the framework of Yang-Baxter integrability. This opens a way for the systematic quantization of a large class of integrable non-linear sigma models. There may also be some interest in terms of Condensed Matter applications, as the theory can be thought of as a multiparametric generalization of the Kondo model.



قيم البحث

اقرأ أيضاً

The periodic sl(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to th e strong coupling regime of a sigma model on the complex projective superspace $mathbb{CP}^{1|1} = mathrm{U}(2|1) / (mathrm{U}(1) times mathrm{U}(1|1))$, and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of [N. Read and H. Saleur, Nucl. Phys. B 777 316 (2007)]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.
This review describes a link between Lax operators, embedded surfaces and Thermodynamic Bethe Ansatz equations for integrable quantum field theories. This surprising connection between classical and quantum models is undoubtedly one of the most strik ing discoveries that emerged from the off-critical generalisation of the ODE/IM correspondence, which initially involved only conformal invariant quantum field theories. We will mainly focus of the KdV and sinh-Gordon models. However, various aspects of other interesting systems, such as affine Toda field theories and non-linear sigma models, will be mentioned. We also discuss the implications of these ideas in the AdS/CFT context, involving minimal surfaces and Wilson loops. This work is a follow-up of the ODE/IM review published more than ten years ago by JPA, before the discovery of its off-critical generalisation and the corresponding geometrical interpretation. (Partially based on lectures given at the Young Researchers Integrability School 2017, in Dublin.)
We describe the relation between integrable Kondo problems in products of chiral $SU(2)$ WZW models and affine $SU(2)$ Gaudin models. We propose a full ODE/IM solution of the spectral problem for these models.
We study solutions of the Thermodynamic Bethe Ansatz equations for relativistic theories defined by the factorizable $S$-matrix of an integrable QFT deformed by CDD factors. Such $S$-matrices appear under generalized TTbar deformations of integrable QFT by special irrelevant operators. The TBA equations, of course, determine the ground state energy $E(R)$ of the finite-size system, with the spatial coordinate compactified on a circle of circumference $R$. We limit attention to theories involving just one kind of stable particles, and consider deformations of the trivial (free fermion or boson) $S$-matrix by CDD factors with two elementary poles and regular high energy asymptotics -- the 2CDD model. We find that for all values of the parameters (positions of the CDD poles) the TBA equations exhibit two real solutions at $R$ greater than a certain parameter-dependent value $R_*$, which we refer to as the primary and secondary branches. The primary branch is identified with the standard iterative solution, while the secondary one is unstable against iterations and needs to be accessed through an alternative numerical method known as pseudo-arc-length continuation. The two branches merge at the turning point $R_*$ (a square-root branching point). The singularity signals a Hagedorn behavior of the density of high energy states of the deformed theories, a feature incompatible with the Wilsonian notion of a local QFT originating from a UV fixed point, but typical for string theories. This behavior of $E(R)$ is qualitatively the same as the one for standard TTbar deformations of local QFT.
We study the SYK$_{2}$ model of $N$ Majorana fermions with random quadratic interactions through a detailed spectral analysis and by coupling the model to 2- and 4-point sources. In particular, we define the generalized spectral form factor and level spacing distribution function by generalizing from the partition function to the generating function. For $N=2$, we obtain an exact solution of the generalized spectral form factor. It exhibits qualitatively similar behavior to the higher $N$ case with a source term. The exact solution helps understand the behavior of the generalized spectral form factor. We calculate the generalized level spacing distribution function and the mean value of the adjacent gap ratio defined by the generating function. For the SYK$_2$ model with a 4-point source term, we find a Gaussian unitary ensemble behavior in the near-integrable region of the theory, which indicates a transition to chaos. This behavior is confirmed by the connected part of the generalized spectral form factor with an unfolded spectrum. The departure from this Gaussian random matrix behavior as the relative strength of the source term is increased is consistent with the observation that the 4-point source term alone, without the SYK$_2$ couplings turned on, exhibits an integrable spectrum from the spectral form factor and level spacing distribution function in the large $N$ limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا