ﻻ يوجد ملخص باللغة العربية
We study the SYK$_{2}$ model of $N$ Majorana fermions with random quadratic interactions through a detailed spectral analysis and by coupling the model to 2- and 4-point sources. In particular, we define the generalized spectral form factor and level spacing distribution function by generalizing from the partition function to the generating function. For $N=2$, we obtain an exact solution of the generalized spectral form factor. It exhibits qualitatively similar behavior to the higher $N$ case with a source term. The exact solution helps understand the behavior of the generalized spectral form factor. We calculate the generalized level spacing distribution function and the mean value of the adjacent gap ratio defined by the generating function. For the SYK$_2$ model with a 4-point source term, we find a Gaussian unitary ensemble behavior in the near-integrable region of the theory, which indicates a transition to chaos. This behavior is confirmed by the connected part of the generalized spectral form factor with an unfolded spectrum. The departure from this Gaussian random matrix behavior as the relative strength of the source term is increased is consistent with the observation that the 4-point source term alone, without the SYK$_2$ couplings turned on, exhibits an integrable spectrum from the spectral form factor and level spacing distribution function in the large $N$ limit.
We consider multi-energy level distributions in the SYK model, and in particular, the role of global fluctuations in the density of states of the SYK model. The connected contributions to the moments of the density of states go to zero as $N to infty
The concepts of operator size and computational complexity play important roles in the study of quantum chaos and holographic duality because they help characterize the structure of time-evolving Heisenberg operators. It is particularly important to
We study various properties of the soft modes in the $mathcal{N}=2$ supersymmetric SYK model.
We study a two-site Sachdev-Ye-Kitaev (SYK) model with complex couplings, and identify a low temperature transition to a gapped phase characterized by a constant in temperature free energy. This transition is observed without introducing a coupling b
We study the SYK model in the large $N$ limit beyond the replica-diagonal approximation. First we show that there are exact replica-nondiagonal solutions of the saddle point equations for $q=2$ for any finite replica number $M$. In the interacting $q