ترغب بنشر مسار تعليمي؟ اضغط هنا

Dopant redistribution and activation in Ga ion-implanted high Ge content SiGe by explosive crystallization during UV nanosecond pulsed laser annealing

67   0   0.0 ( 0 )
 نشر من قبل Toshiyuki Tabata
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Toshiyuki Tabata




اسأل ChatGPT حول البحث

Explosive crystallization (EC) is often observed when using nanosecond-pulsed melt laser annealing (MLA) in amorphous silicon (Si) and germanium (Ge). The solidification velocity in EC is so fast that a diffusion-less crystallization can be expected. In the contacts of advanced transistors, the active level at the metal/semiconductor Schottky interface must be very high to achieve a sub-10^{-9} ohm.cm2 contact resistivity, which has been already demonstrated by using the dopant surface segregation induced by MLA. However, the beneficial layer of a few nanometers at the surface may be easily consumed during subsequent contact cleaning and metallization. EC helps to address such kind of process integration issues, enabling the optimal positioning of the peak of the dopant chemical profile. However, there is a lack of experimental studies of EC in heavily-doped semiconductor materials. Furthermore, to the best of our knowledge, dopant activation by EC has never been experimentally reported. In this paper, we present dopant redistribution and activation by an EC process induced by UV nanosecond-pulsed MLA in heavily gallium (Ga) ion-implanted high Ge content SiGe. Based on the obtained results, we also highlight potential issues of integrating EC into real device fabrication processes and discuss how to manage them.



قيم البحث

اقرأ أيضاً

Ferromagnetic InMnAs has been prepared by Mn ion implantation and pulsed laser annealing. The InMnAs layer reveals a saturated magnetization of 2.6 mu_B/Mn at 5 K and a perpendicular magnetic anisotropy. The Curie temperature is determined to be 46 K , which is higher than those in previous reports with similar Mn concentrations. Ferromagnetism is further evidenced by the large magnetic circular dichroism.
In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be scu lpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond-air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 {deg}C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 {deg}C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.
111 - A. Persaud , J.J. Barnard , H. Guo 2014
Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at t he new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.
Wires of sp-hybridized carbon atoms are attracting interest for both fundamental aspects of carbon science and for their appealing functional properties. The synthesis by physical vapor deposition has been reported to provide sp-rich carbon films but still needs to be further developed and understood in detail. Here the synthesis of carbon-atom wires (CAWs) has been achieved by nanosecond pulsed laser deposition (PLD) expoliting the strong out-of-equilibrium conditions occurring when the ablation plasma is confined in a background gas. Surface Enhnaced Raman scattering (SERS) spectra of deposited films indicates that CAWs are mixed with a mainly $sp^2$ amorphous carbon in a $sp-sp^2$ hybrid material. Optimal conditions for the deposition of sp-carbon phase have been investigated by changing deposition parameters thus suggesting basic mechanisms of carbon wires formation. Our proof-of-concept may open new perspectives for the targeted fabrication of CAWs and $sp-sp^2$ structures.
Micron-thick boron films have been deposited by Pulsed Laser Deposition in vacuum on several substrates at room temperature. The use of high energy pulses (>700 mJ) results in the deposition of smooth coatings with low oxygen uptake even at base pres sures of 10$^{-4}$ - 10$^{-3}$ Pa. A detailed structural analysis, by X-Ray Diffraction and Raman, allowed to assess the amorphous nature of the deposited films as well as to determine the base pressure that prevents boron oxide formation. In addition the crystallization dynamics has been characterized showing that film crystallinity already improves at relatively low temperatures (800 {deg}C). Elastic properties of the boron films have been determined by Brillouin spectroscopy. Finally, micro-hardness tests have been used to explore cohesion and hardness of B films deposited on aluminum, silicon and alumina. The reported deposition strategy allows the growth of reliable boron coatings paving the way for their use in many technology fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا