ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural transformation of implanted diamond layers during high temperature annealing

113   0   0.0 ( 0 )
 نشر من قبل Paolo Olivero
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be sculpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond-air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 {deg}C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 {deg}C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.

قيم البحث

اقرأ أيضاً

Due to their outstanding mechanical properties, diamond and diamond-like materials find significant technological applications ranging from well-established industrial fields (cutting tools, coatings, etc.) to more advanced mechanical devices as micr o- and nano-electromechanical systems. The use of energetic ions is a powerful and versatile tool to fabricate three-dimensional micro-mechanical structures. In this context, it is of paramount importance to have an accurate knowledge of the effects of ion-induced structural damage on the mechanical properties of this material, firstly to predict potential undesired side-effects of the ion implantation process, and possibly to tailor the desired mechanical properties of the fabricated devices. We present an Atomic Force Microscopy (AFM) characterization of free-standing cantilevers in single-crystal diamond obtained by a FIB-assisted lift-off technique, which allows a determination of the Youngs modulus of the diamond crystal after the MeV ion irradiation process concurrent to the fabrication of the microstructures, and subsequent thermal annealing. The AFM measurements were performed with the beam-bending technique and show that the thermal annealing process allows for an effective recovery of the mechanical properties of the pristine crystal.
We report on structural, magnetic and electronic properties of Co-implanted TiO2 rutile single crystals for different implantation doses. Strong ferromagnetism at room temperature and above is observed in TiO2 rutile plates after cobalt ion implantat ion, with magnetic parameters depending on the cobalt implantation dose. While the structural data indicate the presence of metallic cobalt clusters, the multiplet structure of the Co L3 edge in the XAS spectra gives clear evidence for a substitutional Co 2+ state. The detailed analysis of the structural and magnetic properties indicates that there are two magnetic phases in Co-implanted TiO2 plates. One is a ferromagnetic phase due to the formation of long range ferromagnetic ordering between implanted magnetic cobalt ions in the rutile phase, and the second one is a superparamagnetic phase originates from the formation of metallic cobalt clusters in the implanted region. Using x-ray resonant magnetic scattering, the element specific magnetization of cobalt, oxygen and titanium in Co-implanted TiO2 single crystals are investigated. Magnetic dichroism was observed at the Co L edges as well as at the O K edge. The interaction mechanism, which leads to ferromagnetic ordering of substituted cobalt ions in the host matrix, is also discussed.
Explosive crystallization (EC) is often observed when using nanosecond-pulsed melt laser annealing (MLA) in amorphous silicon (Si) and germanium (Ge). The solidification velocity in EC is so fast that a diffusion-less crystallization can be expected. In the contacts of advanced transistors, the active level at the metal/semiconductor Schottky interface must be very high to achieve a sub-10^{-9} ohm.cm2 contact resistivity, which has been already demonstrated by using the dopant surface segregation induced by MLA. However, the beneficial layer of a few nanometers at the surface may be easily consumed during subsequent contact cleaning and metallization. EC helps to address such kind of process integration issues, enabling the optimal positioning of the peak of the dopant chemical profile. However, there is a lack of experimental studies of EC in heavily-doped semiconductor materials. Furthermore, to the best of our knowledge, dopant activation by EC has never been experimentally reported. In this paper, we present dopant redistribution and activation by an EC process induced by UV nanosecond-pulsed MLA in heavily gallium (Ga) ion-implanted high Ge content SiGe. Based on the obtained results, we also highlight potential issues of integrating EC into real device fabrication processes and discuss how to manage them.
Methods of optical dynamic nuclear polarization (DNP) open the door to the replenishable hyperpolarization of nuclear spins, boosting their NMR/MRI signature by orders of magnitude. Nanodiamond powder rich in negatively charged Nitrogen Vacancy (NV) defect centers has recently emerged as one such promising platform, wherein 13C nuclei can be hyperpolarized through the optically pumped defects completely at room temperature and at low magnetic fields. Given the compelling possibility of relaying this 13C polarization to nuclei in external liquids, there is an urgent need for the engineered production of highly hyperpolarizable diamond particles. In this paper, we report on a systematic study of various material dimensions affecting optical 13C hyperpolarization in diamond particles -- especially electron irradiation and annealing conditions that drive NV center formation. We discover surprisingly that diamond annealing at elevated temperatures close to 1720C have remarkable effects on the hyperpolarization levels, enhancing them by upto 36-fold over materials annealed through conventional means. We unravel the intriguing material origins of these gains, and demonstrate they arise from a simultaneous improvement in NV electron relaxation time and coherence time, as well as the reduction of paramagnetic content, and an increase in 13C relaxation lifetimes. Overall this points to significant recovery of the diamond lattice from radiation damage as a result of the high-temperature annealing. Our work suggests methods for the guided materials production of fluorescent, 13C hyperpolarized, nanodiamonds and pathways for their use as multi-modal (optical and MRI) imaging and hyperpolarization agents.
236 - F. Bosia , P. Olivero , E. Vittone 2016
We present experimental results and numerical Finite Element analysis to describe surface swelling due to the creation of buried graphite-like inclusions in diamond substrates subjected to MeV ion implantation. Numerical predictions are compared to e xperimental data for MeV proton and helium implantations, performed with scanning ion microbeams. Swelling values are measured with white light interferometric profilometry in both cases. Simulations are based on a model which accounts for the through-the-thickness variation of mechanical parameters in the material, as a function of ion type, fluence and energy. Surface deformation profiles and internal stress distributions are analyzed and numerical results are seen to adequately fit experimental data. Results allow us to draw conclusions on structural damage mechanisms in diamond for different MeV ion implantations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا