ﻻ يوجد ملخص باللغة العربية
It has been shown [1] that many seemingly contradictory experimental findings concerning the superconducting state in Sr$_2$RuO$_4$ can be accounted for as resulting from the existence of an assumed tetra-critical point at near ambient pressure at which $d_{x^2-y^2}$ and $g_{xy(x^2-y^2)}$ superconducting states are degenerate. We perform both a Landau-Ginzburg and a microscopic mean-field analysis of the effect of spatially varying strain on such a state. In the presence of finite $xy$ shear strain, the superconducting state consists of two possible symmetry-related time-reversal symmetry (TRS) preserving states: $d pm g$. However, at domain walls between two such regions, TRS can be broken, resulting in a $d+ig$ state. More generally, we find that various natural patterns of spatially varying strain induce a rich variety of superconducting textures, including half-quantum fluxoids. These results may resolve some of the apparent inconsistencies between the theoretical proposal and various experimental observations, including the suggestive evidence of half-quantum vortices [2]. [1] Steven A Kivelson, Andrew C Yuan, BJ Ramshaw, and Ronny Thomale, A proposal for reconciling diverse experiments on the superconducting state in Sr$_2$RuO$_4$, npj Quantum Mater 5 (2020). [2] J Jang, DG Ferguson, V Vakaryuk, Raffi Budakian, SB Chung, PM Goldbart, and Y Maeno, Observation of half-height magnetization steps in Sr$_2$RuO$_4$, Science 331, 186-188 (2011).
There is considerable evidence that the superconducting state of Sr$_2$RuO$_4$ breaks time reversal symmetry. In the experiments showing time reversal symmetry breaking its onset temperature, $T_text{TRSB}$, is generally found to match the critical t
Among unconventional superconductors, Sr$_2$RuO$_4$ has become a benchmark for experimentation and theoretical analysis because its normal-state electronic structure is known with exceptional precision, and because of experimental evidence that its s
Motivated by the success of experimental manipulation of the band structure through biaxial strain in Sr$_2$RuO$_4$ thin film grown on a mismatched substrate, we investigate theoretically the effects of biaxial strain on the electronic instabilities,
We analyze the spin anisotropy of the magnetic susceptibility of Sr$_2$RuO$4$ in presence of spin-orbit coupling and anisotropic strain using quasi-two-dimensional tight-binding parametrization fitted to the ARPES results. Similar to the previous obs
We review electronic transport in superconducting junctions with Sr$_2$RuO$_4$. Transport measurements provide evidence for chiral domain walls and, therefore, chiral superconductivity in superconducting Sr$_2$RuO$_4$, but so far, the symmetry of the