ترغب بنشر مسار تعليمي؟ اضغط هنا

Split superconducting and time-reversal symmetry-breaking transitions, and magnetic order in Sr$_2$RuO$_4$ under uniaxial stress

117   0   0.0 ( 0 )
 نشر من قبل Hans-Henning Klauss
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among unconventional superconductors, Sr$_2$RuO$_4$ has become a benchmark for experimentation and theoretical analysis because its normal-state electronic structure is known with exceptional precision, and because of experimental evidence that its superconductivity has, very unusually, a spontaneous angular momentum, i.e. a chiral state. This hypothesis of chirality is however difficult to reconcile with recent evidence on the spin part of the order parameter. Measurements under uniaxial stress offer an ideal way to test for chirality, because under uniaxial stress the superconducting and chiral transitions are predicted to split, allowing the empirical signatures of each to be identified separately. Here, we report zerofield muon spin relaxation (ZF-$mu$SR) measurements on crystals placed under uniaxial stresses of up to 1.05 GPa. We report a clear stress-induced splitting between the onset temperatures of superconductivity and time-reversal symmetry breaking, consistent with qualitative expectations for chiral superconductivity. We also report the appearance of unexpected bulk magnetic order under a uniaxial stress of ~ 1.0 GPa in clean Sr$_2$RuO$_4$.

قيم البحث

اقرأ أيضاً

There is considerable evidence that the superconducting state of Sr$_2$RuO$_4$ breaks time reversal symmetry. In the experiments showing time reversal symmetry breaking its onset temperature, $T_text{TRSB}$, is generally found to match the critical t emperature, $T_text{c}$, within resolution. In combination with evidence for even parity, this result has led to consideration of a $d_{xz} pm id_{yz}$ order parameter. The degeneracy of the two components of this order parameter is protected by symmetry, yielding $T_text{TRSB} = T_text{c}$, but it has a hard-to-explain horizontal line node at $k_z=0$. Therefore, $s pm id$ and $d pm ig$ order parameters are also under consideration. These avoid the horizontal line node, but require tuning to obtain $T_text{TRSB} approx T_text{c}$. To obtain evidence distinguishing these two possible scenarios (of symmetry-protected versus accidental degeneracy), we employ zero-field muon spin rotation/relaxation to study pure Sr$_2$RuO$_4$ under hydrostatic pressure, and Sr$_{1.98}$La$_{0.02}$RuO$_4$ at zero pressure. Both hydrostatic pressure and La substitution alter $T_text{c}$ without lifting the tetragonal lattice symmetry, so if the degeneracy is symmetry-protected $T_text{TRSB}$ should track changes in $T_text{c}$, while if it is accidental, these transition temperatures should generally separate. We observe $T_text{TRSB}$ to track $T_text{c}$, supporting the hypothesis of $d_{xz} pm id_{yz}$ order.
Sr$_2$RuO$_4$ has stood as the leading candidate for a spin-triplet superconductor for 26 years. Recent NMR experiments have cast doubt on this candidacy, however, and it is difficult to find a theory of superconductivity that is consistent with all experiments. What is needed are symmetry-based experiments that can rule out broad classes of possible superconducting order parameters. Here we use resonant ultrasound spectroscopy to measure the entire symmetry-resolved elastic tensor of Sr$_2$RuO$_4$ through the superconducting transition. We observe a thermodynamic discontinuity in the shear elastic modulus $c_{66}$, requiring that the superconducting order parameter is two-component. A two-component $p$-wave order parameter, such as $p_x+i p_y$, naturally satisfies this requirement. As this order parameter appears to be precluded by recent NMR experiments, we suggest that two other two-component order parameters, namely $left{d_{xz},d_{yz}right}$ or $left{d_{x^2-y^2},g_{xy(x^2-y^2)}right}$, are now the prime candidates for the order parameter of Sr$_2$RuO$_4$.
311 - S. Benhabib , C. Lupien , I. Paul 2020
The quasi-2D metal Sr$_2$RuO$_4$ is one of the best characterized unconventional superconductors, yet the nature of its superconducting order parameter is still highly debated. This information is crucial to determine the pairing mechanism of Cooper pairs. Here we use ultrasound velocity to probe the superconducting state of Sr$_2$RuO$_4$. This thermodynamic probe is symmetry-sensitive and can help to identify the superconducting order symmetry. Indeed, we observe a sharp jump in the shear elastic constant $c_{66}$ as the temperature is raised across the superconducting transition at $T_c$. This directly implies that the superconducting order parameter is of a two-component nature. Based on symmetry argument and given the other known properties of Sr$_2$RuO$_4$, we discuss what states are compatible with this requirement and propose that the two-component order parameter, namely $lbrace d_{xz}; d_{yz} rbrace$, is the most likely candidate.
Motivated by the success of experimental manipulation of the band structure through biaxial strain in Sr$_2$RuO$_4$ thin film grown on a mismatched substrate, we investigate theoretically the effects of biaxial strain on the electronic instabilities, such as superconductivity (SC) and spin density wave (SDW), by functional renormalization group. According to the experiment, the positive strain (from lattice expansion) causes charge transfer to the $gamma$-band and consequently Lifshitz reconstruction of the Fermi surface. Our theoretical calculations show that within a limited range of positive strain a p-wave superconducting order is realized. However, as the strain is increased further the system develops into the SDW state well before the Lifshitz transition is reached. We also consider the effect of negative strains (from lattice constriction). As the strain increases, there is a transition from p-wave SC state to nodal s-wave SC state. The theoretical results are discussed in comparison to experiment and can be checked by further experiments.
52 - Andrew C. Yuan , Erez Berg , 2021
It has been shown [1] that many seemingly contradictory experimental findings concerning the superconducting state in Sr$_2$RuO$_4$ can be accounted for as resulting from the existence of an assumed tetra-critical point at near ambient pressure at wh ich $d_{x^2-y^2}$ and $g_{xy(x^2-y^2)}$ superconducting states are degenerate. We perform both a Landau-Ginzburg and a microscopic mean-field analysis of the effect of spatially varying strain on such a state. In the presence of finite $xy$ shear strain, the superconducting state consists of two possible symmetry-related time-reversal symmetry (TRS) preserving states: $d pm g$. However, at domain walls between two such regions, TRS can be broken, resulting in a $d+ig$ state. More generally, we find that various natural patterns of spatially varying strain induce a rich variety of superconducting textures, including half-quantum fluxoids. These results may resolve some of the apparent inconsistencies between the theoretical proposal and various experimental observations, including the suggestive evidence of half-quantum vortices [2]. [1] Steven A Kivelson, Andrew C Yuan, BJ Ramshaw, and Ronny Thomale, A proposal for reconciling diverse experiments on the superconducting state in Sr$_2$RuO$_4$, npj Quantum Mater 5 (2020). [2] J Jang, DG Ferguson, V Vakaryuk, Raffi Budakian, SB Chung, PM Goldbart, and Y Maeno, Observation of half-height magnetization steps in Sr$_2$RuO$_4$, Science 331, 186-188 (2011).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا