ﻻ يوجد ملخص باللغة العربية
The proper motions of stars in the outskirts of globular clusters are used to estimate cluster velocity dispersion profiles as far as possible within their tidal radii. We use individual color-magnitude diagrams to select high probability cluster stars for 25 metal-poor globular clusters within 20 kpc of the sun, 19 of which have substantial numbers of stars at large radii. Of the 19, 11 clusters have a falling velocity dispersion in the 3-6 half mass radii range, 6 are flat, and 2 plausibly have a rising velocity dispersion. The profiles are all in the range expected from simulated clusters started at high redshift in a zoom-in cosmological simulation. The 11 clusters with falling velocity dispersion profiles are consistent with no dark matter above the Galactic background. The 6 clusters with approximately flat velocity dispersion profiles could have local dark matter, but are ambiguous. The 2 clusters with rising velocity dispersion profiles are consistent with a remnant local dark matter halo, but need membership confirmation and detailed orbital modeling to further test these preliminary results.
A cosmological zoom-in simulation which develops into a Milky Way-like halo is started at redshift 7. The initial dark matter distribution is seeded with dense star clusters, median mass $5times 10^5 M_sun$, placed in the largest sub-halos present, w
Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarfs, where other kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions that may
Recently, cite{vanDokkum2018} have presented an important discovery of an ultra diffuse galaxy, NGC1052-DF2, with a dark matter content significantly less than predicted from its stellar mass alone. The analysis relies on measured radial velocities o
Small distortions in the images of Einstein rings or giant arcs offer the exciting prospect of detecting dark matter haloes or subhaloes of mass below $10^9$M$_{odot}$, most of which are too small to have made a visible galaxy. A very large number of
The outskirts of globular clusters (GCs) simultaneously retain crucial information about their formation mechanism and the properties of their host galaxy. Thanks to the advent of precision astrometry both their morphological and kinematic properties