ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating Globular Clusters in Dark Matter Sub-Halos

73   0   0.0 ( 0 )
 نشر من قبل Ray Carlberg
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A cosmological zoom-in simulation which develops into a Milky Way-like halo is started at redshift 7. The initial dark matter distribution is seeded with dense star clusters, median mass $5times 10^5 M_sun$, placed in the largest sub-halos present, which have a median peak circular velocity of 25 kms. Three simulations are initialized using the same dark matter distribution, with the star clusters started on approximately circular orbits having initial median radii 6.8 kpc, 0.14 kpc, and, at the exact center of the sub-halos. The simulations are evolved to the current epoch at which time the median galactic orbital radii of the three sets of clusters are 30, 5 and 16 kpc, with the clusters losing about 2, 50 and 15% of their mass, respectively. Clusters started at small orbital radii have so much tidal forcing that they are often not in equilibrium. Clusters started at larger sub-halo radii have a velocity dispersion that declines smoothly to $simeq$20% of the central value at $simeq$20 half mass radii. The clusters started at the sub-halo centers can show a rise in velocity dispersion beyond 3-5 half mass radii. That is, the clusters formed without local dark matter always have stellar mass dominated kinematics at all radii, whereas about 25% of the clusters started at sub-halo centers have remnant local dark matter.



قيم البحث

اقرأ أيضاً

81 - Qiuhan He , Ran Li , Sungsoon Lim 2017
Small distortions in the images of Einstein rings or giant arcs offer the exciting prospect of detecting dark matter haloes or subhaloes of mass below $10^9$M$_{odot}$, most of which are too small to have made a visible galaxy. A very large number of such haloes are predicted to exist in the cold dark matter model of cosmogony; in contrast other models, such as warm dark matter, predict no haloes below a mass of this order which depends on the properties of the warm dark matter particle. Attempting to detect these small perturbers could therefore discriminate between different kinds of dark matter particles, and even rule out the cold dark matter model altogether. Globular clusters in the lens galaxy also induce distortions in the image which could, in principle, contaminate the test. Here, we investigate the population of globular clusters in six early type galaxies in the Virgo cluster. We find that the number density of globular clusters of mass $sim10^6$M$_{odot}$ is comparable to that of the dark matter perturbers (including subhaloes in the lens and haloes along the line-of-sight). We show that the very different degrees of mass concentration in globular clusters and dark matter haloes result in different lensing distortions. These are detectable with milli-arcsecond resolution imaging which can distinguish between globular cluster and dark matter halo signals.
The proper motions of stars in the outskirts of globular clusters are used to estimate cluster velocity dispersion profiles as far as possible within their tidal radii. We use individual color-magnitude diagrams to select high probability cluster sta rs for 25 metal-poor globular clusters within 20 kpc of the sun, 19 of which have substantial numbers of stars at large radii. Of the 19, 11 clusters have a falling velocity dispersion in the 3-6 half mass radii range, 6 are flat, and 2 plausibly have a rising velocity dispersion. The profiles are all in the range expected from simulated clusters started at high redshift in a zoom-in cosmological simulation. The 11 clusters with falling velocity dispersion profiles are consistent with no dark matter above the Galactic background. The 6 clusters with approximately flat velocity dispersion profiles could have local dark matter, but are ambiguous. The 2 clusters with rising velocity dispersion profiles are consistent with a remnant local dark matter halo, but need membership confirmation and detailed orbital modeling to further test these preliminary results.
Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectra l properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution in Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition $tau^+ tau^-$, and mass of 43 GeV and composition $b bar b$ can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters. [abridged]
Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarfs, where other kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions that may not hold for the sparse GC population of dwarfs in galaxy clusters. We use a catalog of GCs tagged onto the Illustris simulation to study the accuracy of GC-based mass estimates. We focus on galaxies in the stellar mass range 10$^{8} - 10^{11.8}$ M$_{odot}$ identified in $9$ simulated Virgo-like clusters. Our results indicate that mass estimates are, on average, quite accurate in systems with GC numbers $N_{rm GC} geq 10$ and where the uncertainty of individual GC line-of-sight velocities is smaller than the inferred velocity dispersion, $sigma_{rm GC}$. In cases where $N_{rm GC} leq 10$, however, biases may result depending on how $sigma_{rm GC}$ is computed. We provide calibrations that may help alleviate these biases in methods widely used in the literature. As an application, we find a number of dwarfs with $M_{*} sim 10^{8.5}, M_{odot}$ (comparable to the ultradiffuse galaxy DF2, notable for the low $sigma_{GC}$ of its $10$ GCs) with $sigma_{rm GC} sim 7$ - $15; rm km rm s^{-1}$. These DF2 analogs correspond to relatively massive systems at their infall time ($M_{200} sim 1$ - $3 times 10^{11}$ $M_{odot}$) which have retained only $3$-$17$ GCs and have been stripped of more than 95$%$ of their dark matter. Our results suggest that extreme tidal mass loss in otherwise normal dwarf galaxies may be a possible formation channel for ultradiffuse objects like DF2.
Dark matter halos of sub-solar mass are the first bound objects to form in cold dark matter theories. In this article, I discuss the present understanding of microhalos, their role in structure formation, and the implications of their potential prese nce, in the interpretation of dark matter experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا