ترغب بنشر مسار تعليمي؟ اضغط هنا

Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon

87   0   0.0 ( 0 )
 نشر من قبل Andrew Chael
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulated images of a black hole surrounded by optically thin emission typically display two main features: a central brightness depression and a narrow, bright photon ring consisting of strongly lensed images superposed on top of the direct emission. The photon ring closely tracks a theoretical curve on the image plane corresponding to light rays that asymptote to unstably bound photon orbits around the black hole. This critical curve has a size and shape that are purely governed by the Kerr geometry; in contrast, the size, shape, and depth of the observed brightness depression all depend on the details of the emission region. For instance, images of spherical accretion models display a distinctive dark region -- the black hole shadow -- that completely fills the photon ring. By contrast, in models of equatorial disks extending to the black holes event horizon, the darkest region in the image is restricted to a much smaller area -- an inner shadow -- whose edge lies near the direct lensed image of the equatorial horizon. Using both semi-analytic models and general relativistic magnetohydrodynamic (GRMHD) simulations, we demonstrate that the photon ring and inner shadow may be simultaneously visible in submillimeter images of M87*, where magnetically arrested disk (MAD) simulations predict that the emission arises in a thin region near the equatorial plane. We show that the relative size, shape, and centroid of the photon ring and inner shadow can be used to estimate the black hole mass and spin, breaking degeneracies in measurements of these quantities that rely on the photon ring alone. Both features may be accessible to direct observation via high-dynamic-range images with a next-generation Event Horizon Telescope.



قيم البحث

اقرأ أيضاً

A fundamental difference between a neutron star (NS) and a black hole (BH) is the absence of a physical surface in the latter. For this reason, any remaining kinetic energy of the matter accreting onto a BH is advected inside its event horizon. In th e case of an NS, on the contrary, accreting material is decelerated on the NS surface, and its kinetic energy is eventually radiated away. Copious soft photons produced by the NS surface will affect the properties of the Comptonised component dominating spectra of X-ray binaries in the hard state. Thus, parameters of the Comptonised spectra -- the electron temperature $kT_{rm e}$ and the Compton $y$-parameter, could serve as an important tool for distinguishing BHs from NSs. In this paper, we systematically analyse heretofore the largest sample of spectra from the BH and NS X-ray binaries in the hard state for this purpose, using archival RXTE/PCA and RXTE/HEXTE observations. We find that the BHs and NSs occupy distinctly different regions in the $y-kT_{rm e}$ plane with NSs being characterised by systematically lower values of $y$-parameter and electron temperature. Due to the shape of the boundary between BHs and NSs on the $y-kT_{rm e}$ plane, their one-dimensional $y$ and $kT_{rm e}$ distributions have some overlap. A cleaner one parameter diagnostic of the nature of the compact object in X-ray binaries is provided by the Compton amplification factor $A$, with the boundary between BHs and NSs lying at $Aapprox 3.5-4$. This is by far the most significant detection of the imprint of the event horizon on the X-ray spectra for stable stellar-mass BHs.
Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of General Relativity (GR). Until recently, their compact size has prevented efforts to study them directly . Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but requires the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.
The half opening angle of a Kerr black-hole shadow is always equal to (5+-0.2)GM/Dc^2, where M is the mass of the black hole and D is its distance from the Earth. Therefore, measuring the size of a shadow and verifying whether it is within this 4% ra nge constitutes a null hypothesis test of General Relativity. We show that the black hole in the center of the Milky Way, Sgr A*, is the optimal target for performing this test with upcoming observations using the Event Horizon Telescope. We use the results of optical/IR monitoring of stellar orbits to show that the mass-to-distance ratio for Sgr A* is already known to an accuracy of +-4%. We investigate our prior knowledge of the properties of the scattering screen between Sgr A and the Earth, the effects of which will need to be corrected for in order for the black-hole shadow to appear sharp against the background emission. Finally, we explore an edge detection scheme for interferometric data and a pattern matching algorithm based on the Hough/Radon transform and demonstrate that the shadow of the black hole at 1.3 mm can be localized, in principle, to within ~9%. All these results suggest that our prior knowledge of the properties of the black hole, of scattering broadening, and of the accretion flow can only limit this General Relativistic null hypothesis test with Event Horizon Telescope observations of Sgr A* to 10%.
Interferometers, such as the Event Horizon Telescope (EHT), do not directly observe the images of sources but rather measure their Fourier components at discrete spatial frequencies up to a maximum value set by the longest baseline in the array. Cons truction of images from the Fourier components or analysis of them with high-resolution models requires careful treatment of fine source structure nominally beyond the array resolution. The primary EHT targets, Sgr A* and M87, are expected to have black-hole shadows with sharp edges and strongly filamentary emission from the surrounding plasma on scales much smaller than those probed by the currently largest baselines. We show that for aliasing not to affect images reconstructed with regularized maximum likelihood methods and model images that are directly compared to the data, the sampling of these images (i.e., their pixel spacing) needs to be significantly finer than the scale probed by the largest baseline in the array. Using GRMHD simulations of black-hole images, we estimate the maximum allowable pixel spacing to be approximately equal to (1/8)GM/c^2; for both of the primary EHT targets, this corresponds to an angular pixel size of <0.5 microarcseconds. With aliasing under control, we then advocate use of the second-order Butterworth filter with a cut-off scale equal to the maximum array baseline as optimal for visualizing the reconstructed images. In contrast to the traditional Gaussian filters, this Butterworth filter retains most of the power at the scales probed by the array while suppressing the fine image details for which no data exist.
The 6 billion solar mass supermassive black hole at the center of the giant elliptical galaxy M87 powers a relativistic jet. Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا