ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis and Applications of Class-wise Robustness in Adversarial Training

68   0   0.0 ( 0 )
 نشر من قبل Qi Tian
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial training is one of the most effective approaches to improve model robustness against adversarial examples. However, previous works mainly focus on the overall robustness of the model, and the in-depth analysis on the role of each class involved in adversarial training is still missing. In this paper, we propose to analyze the class-wise robustness in adversarial training. First, we provide a detailed diagnosis of adversarial training on six benchmark datasets, i.e., MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10 and ImageNet. Surprisingly, we find that there are remarkable robustness discrepancies among classes, leading to unbalance/unfair class-wise robustness in the robust models. Furthermore, we keep investigating the relations between classes and find that the unbalanced class-wise robustness is pretty consistent among different attack and defense methods. Moreover, we observe that the stronger attack methods in adversarial learning achieve performance improvement mainly from a more successful attack on the vulnerable classes (i.e., classes with less robustness). Inspired by these interesting findings, we design a simple but effective attack method based on the traditional PGD attack, named Temperature-PGD attack, which proposes to enlarge the robustness disparity among classes with a temperature factor on the confidence distribution of each image. Experiments demonstrate our method can achieve a higher attack rate than the PGD attack. Furthermore, from the defense perspective, we also make some modifications in the training and inference phase to improve the robustness of the most vulnerable class, so as to mitigate the large difference in class-wise robustness. We believe our work can contribute to a more comprehensive understanding of adversarial training as well as rethinking the class-wise properties in robust models.

قيم البحث

اقرأ أيضاً

Adversarial training can considerably robustify deep neural networks to resist adversarial attacks. However, some works suggested that adversarial training might comprise the privacy-preserving and generalization abilities. This paper establishes and quantifies the privacy-robustness trade-off and generalization-robustness trade-off in adversarial training from both theoretical and empirical aspects. We first define a notion, {it robustified intensity} to measure the robustness of an adversarial training algorithm. This measure can be approximate empirically by an asymptotically consistent empirical estimator, {it empirical robustified intensity}. Based on the robustified intensity, we prove that (1) adversarial training is $(varepsilon, delta)$-differentially private, where the magnitude of the differential privacy has a positive correlation with the robustified intensity; and (2) the generalization error of adversarial training can be upper bounded by an $mathcal O(sqrt{log N}/N)$ on-average bound and an $mathcal O(1/sqrt{N})$ high-probability bound, both of which have positive correlations with the robustified intensity. Additionally, our generalization bounds do not explicitly rely on the parameter size which would be prohibitively large in deep learning. Systematic experiments on standard datasets, CIFAR-10 and CIFAR-100, are in full agreement with our theories. The source code package is available at url{https://github.com/fshp971/RPG}.
289 - Tao Bai , Jinqi Luo , Jun Zhao 2021
Adversarial training is one of the most effective approaches defending against adversarial examples for deep learning models. Unlike other defense strategies, adversarial training aims to promote the robustness of models intrinsically. During the las t few years, adversarial training has been studied and discussed from various aspects. A variety of improvements and developments of adversarial training are proposed, which were, however, neglected in existing surveys. For the first time in this survey, we systematically review the recent progress on adversarial training for adversarial robustness with a novel taxonomy. Then we discuss the generalization problems in adversarial training from three perspectives. Finally, we highlight the challenges which are not fully tackled and present potential future directions.
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against th ese variations. However, current defenses can only withstand the specific attack used in training, and the models often remain vulnerable to other input variations. Moreover, these methods often degrade performance of the model on clean images and do not generalize to out-of-domain samples. In this paper we present Generative Adversarial Training, an approach to simultaneously improve the models generalization to the test set and out-of-domain samples as well as its robustness to unseen adversarial attacks. Instead of altering a low-level pre-defined aspect of images, we generate a spectrum of low-level, mid-level and high-level changes using generative models with a disentangled latent space. Adversarial training with these examples enable the model to withstand a wide range of attacks by observing a variety of input alterations during training. We show that our approach not only improves performance of the model on clean images and out-of-domain samples but also makes it robust against unforeseen attacks and outperforms prior work. We validate effectiveness of our method by demonstrating results on various tasks such as classification, segmentation and object detection.
This tutorial aims to introduce the fundamentals of adversarial robustness of deep learning, presenting a well-structured review of up-to-date techniques to assess the vulnerability of various types of deep learning models to adversarial examples. Th is tutorial will particularly highlight state-of-the-art techniques in adversarial attacks and robustness verification of deep neural networks (DNNs). We will also introduce some effective countermeasures to improve the robustness of deep learning models, with a particular focus on adversarial training. We aim to provide a comprehensive overall picture about this emerging direction and enable the community to be aware of the urgency and importance of designing robust deep learning models in safety-critical data analytical applications, ultimately enabling the end-users to trust deep learning classifiers. We will also summarize potential research directions concerning the adversarial robustness of deep learning, and its potential benefits to enable accountable and trustworthy deep learning-based data analytical systems and applications.
Our goal is to understand why the robustness drops after conducting adversarial training for too long. Although this phenomenon is commonly explained as overfitting, our analysis suggest that its primary cause is perturbation underfitting. We observe that after training for too long, FGSM-generated perturbations deteriorate into random noise. Intuitively, since no parameter updates are made to strengthen the perturbation generator, once this process collapses, it could be trapped in such local optima. Also, sophisticating this process could mostly avoid the robustness drop, which supports that this phenomenon is caused by underfitting instead of overfitting. In the light of our analyses, we propose APART, an adaptive adversarial training framework, which parameterizes perturbation generation and progressively strengthens them. Shielding perturbations from underfitting unleashes the potential of our framework. In our experiments, APART provides comparable or even better robustness than PGD-10, with only about 1/4 of its computational cost.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا