ﻻ يوجد ملخص باللغة العربية
Adversarial training is one of the most effective approaches to improve model robustness against adversarial examples. However, previous works mainly focus on the overall robustness of the model, and the in-depth analysis on the role of each class involved in adversarial training is still missing. In this paper, we propose to analyze the class-wise robustness in adversarial training. First, we provide a detailed diagnosis of adversarial training on six benchmark datasets, i.e., MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10 and ImageNet. Surprisingly, we find that there are remarkable robustness discrepancies among classes, leading to unbalance/unfair class-wise robustness in the robust models. Furthermore, we keep investigating the relations between classes and find that the unbalanced class-wise robustness is pretty consistent among different attack and defense methods. Moreover, we observe that the stronger attack methods in adversarial learning achieve performance improvement mainly from a more successful attack on the vulnerable classes (i.e., classes with less robustness). Inspired by these interesting findings, we design a simple but effective attack method based on the traditional PGD attack, named Temperature-PGD attack, which proposes to enlarge the robustness disparity among classes with a temperature factor on the confidence distribution of each image. Experiments demonstrate our method can achieve a higher attack rate than the PGD attack. Furthermore, from the defense perspective, we also make some modifications in the training and inference phase to improve the robustness of the most vulnerable class, so as to mitigate the large difference in class-wise robustness. We believe our work can contribute to a more comprehensive understanding of adversarial training as well as rethinking the class-wise properties in robust models.
Adversarial training can considerably robustify deep neural networks to resist adversarial attacks. However, some works suggested that adversarial training might comprise the privacy-preserving and generalization abilities. This paper establishes and
Adversarial training is one of the most effective approaches defending against adversarial examples for deep learning models. Unlike other defense strategies, adversarial training aims to promote the robustness of models intrinsically. During the las
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against th
This tutorial aims to introduce the fundamentals of adversarial robustness of deep learning, presenting a well-structured review of up-to-date techniques to assess the vulnerability of various types of deep learning models to adversarial examples. Th
Our goal is to understand why the robustness drops after conducting adversarial training for too long. Although this phenomenon is commonly explained as overfitting, our analysis suggest that its primary cause is perturbation underfitting. We observe