ﻻ يوجد ملخص باللغة العربية
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications such as classification, segmentation, and detection. However, learning highly accurate models relies on the availability of large-scale annotated datasets. Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images, termed as domain adaptation problem. There is a plethora of works to adapt classification and segmentation models to label-scarce target datasets through unsupervised domain adaptation. Considering that detection is a fundamental task in computer vision, many recent works have focused on developing novel domain adaptive detection techniques. Here, we describe in detail the domain adaptation problem for detection and present an extensive survey of the various methods. Furthermore, we highlight strategies proposed and the associated shortcomings. Subsequently, we identify multiple aspects of the problem that are most promising for future research. We believe that this survey shall be valuable to the pattern recognition experts working in the fields of computer vision, biometrics, medical imaging, and autonomous navigation by introducing them to the problem, and familiarizing them with the current status of the progress while providing promising directions for future research.
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds. First, we pre-train the 3D detector on the source domain with our proposed random object scaling strateg
Unsupervised domain adaptive object detection aims to adapt detectors from a labelled source domain to an unlabelled target domain. Most existing works take a two-stage strategy that first generates region proposals and then detects objects of intere
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to a different unlabeled target domain. Most existing UDA methods focus on learning domain-invariant feature representation, either from the domain l
With the supervision from source domain only in class-level, existing unsupervised domain adaptation (UDA) methods mainly learn the domain-invariant representations from a shared feature extractor, which causes the source-bias problem. This paper pro
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain. Though many DA theories and algorithms have been proposed, most of them are tailored into classification settings and may fail in regres