ﻻ يوجد ملخص باللغة العربية
In this paper, we reconsider the problem of detecting a matrix-valued rank-one signal in unknown Gaussian noise, which was previously addressed for the case of sufficient training data. We relax the above assumption to the case of limited training data. We re-derive the corresponding generalized likelihood ratio test (GLRT) and two-step GLRT (2S--GLRT) based on certain unitary transformation on the test data. It is shown that the re-derived detectors can work with low sample support. Moreover, in sample-abundant environments the re-derived GLRT is the same as the previously proposed GLRT and the re-derived 2S--GLRT has better detection performance than the previously proposed 2S--GLRT. Numerical examples are provided to demonstrate the effectiveness of the re-derived detectors.
In this paper, we investigate performance improvements of low-power long-range (LoRa) modulation when a gateway is equipped with multiple antennas. We derive the optimal decision rules for both coherent and non-coherent detections when combining sign
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system perfor
One-bit radar, performing signal sampling and quantization by a one-bit ADC, is a promising technology for many civilian applications due to its low-cost and low-power consumptions. In this paper, problems encountered by one-bit LFMCW radar are studi
In this paper, we propose a turbo receiver for joint activity detection and data decoding in grant-free massive random access, which iterates between a detector and a belief propagation (BP)-based channel decoder. Specifically, responsible for user a
Reconstructing a band-limited function from its finite sample data is a fundamental task in signal analysis. A simple Gaussian or hyper-Gaussian regularized Shannon sampling series has been proved to be able to achieve exponential convergence for uni