ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Activity Detection and Data Decoding in Massive Random Access via a Turbo Receiver

142   0   0.0 ( 0 )
 نشر من قبل Xinyu Bian
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a turbo receiver for joint activity detection and data decoding in grant-free massive random access, which iterates between a detector and a belief propagation (BP)-based channel decoder. Specifically, responsible for user activity detection, channel estimation, and soft data symbol detection, the detector is developed based on a bilinear inference problem that exploits the common sparsity pattern in the received pilot and data signals. The bilinear generalized approximate message passing (BiG-AMP) algorithm is adopted to solve the problem using probabilities of the transmitted data symbols estimated by the channel decoder as prior knowledge. In addition, extrinsic information is derived from the detector to improve the channel decoding accuracy of the decoder. Simulation results show significant improvements achieved by the proposed turbo receiver compared with conventional designs.



قيم البحث

اقرأ أيضاً

326 - Xinyu Bian , Yuyi Mao , Jun Zhang 2021
In the massive machine-type communication (mMTC) scenario, a large number of devices with sporadic traffic need to access the network on limited radio resources. While grant-free random access has emerged as a promising mechanism for massive access, its potential has not been fully unleashed. In particular, the common sparsity pattern in the received pilot and data signal has been ignored in most existing studies, and auxiliary information of channel decoding has not been utilized for user activity detection. This paper endeavors to develop advanced receivers in a holistic manner for joint activity detection, channel estimation, and data decoding. In particular, a turbo receiver based on the bilinear generalized approximate message passing (BiG-AMP) algorithm is developed. In this receiver, all the received symbols will be utilized to jointly estimate the channel state, user activity, and soft data symbols, which effectively exploits the common sparsity pattern. Meanwhile, the extrinsic information from the channel decoder will assist the joint channel estimation and data detection. To reduce the complexity, a low-cost side information-aided receiver is also proposed, where the channel decoder provides side information to update the estimates on whether a user is active or not. Simulation results show that the turbo receiver is able to reduce the activity detection, channel estimation, and data decoding errors effectively, while the side information-aided receiver notably outperforms the conventional method with a relatively low complexity.
181 - Xinyu Bian , Yuyi Mao , Jun Zhang 2021
Massive machine-type communication (mMTC) has been regarded as one of the most important use scenarios in the fifth generation (5G) and beyond wireless networks, which demands scalable access for a large number of devices. While grant-free random acc ess has emerged as a promising mechanism for massive access, its potential has not been fully unleashed. Particularly, the two key tasks in massive access systems, namely, user activity detection and data detection, were handled separately in most existing studies, which ignored the common sparsity pattern in the received pilot and data signal. Moreover, error detection and correction in the payload data provide additional mechanisms for performance improvement. In this paper, we propose a data-assisted activity detection framework, which aims at supporting more active users by reducing the activity detection error, consisting of false alarm and missed detection errors. Specifically, after an initial activity detection step based on the pilot symbols, the false alarm users are filtered by applying energy detection for the data symbols; once data symbols of some active users have been successfully decoded, their effect in activity detection will be resolved via successive pilot interference cancellation, which reduces the missed detection error. Simulation results show that the proposed algorithm effectively increases the activity detection accuracy, and it is able to support $sim 20%$ more active users compared to a conventional method in some sample scenarios.
103 - Yuejun Wei , Ming Jiang , Wen Chen 2020
Turbo codes and CRC codes are usually decoded separately according to the serially concatenated inner codes and outer codes respectively. In this letter, we propose a hybrid decoding algorithm of turbo-CRC codes, where the outer codes, CRC codes, are not used for error detection but as an assistance to improve the error correction performance. Two independent iterative decoding and reliability based decoding are carried out in a hybrid schedule, which can efficiently decode the two different codes as an entire codeword. By introducing an efficient error detecting method based on normalized Euclidean distance without CRC check, significant gain can be obtained by using the hybrid decoding method without loss of the error detection ability.
97 - Ye Xue , Yifei Shen , Vincent Lau 2020
Massive MIMO has been regarded as a key enabling technique for 5G and beyond networks. Nevertheless, its performance is limited by the large overhead needed to obtain the high-dimensional channel information. To reduce the huge training overhead asso ciated with conventional pilot-aided designs, we propose a novel blind data detection method by leveraging the channel sparsity and data concentration properties. Specifically, we propose a novel $ell_3$-norm-based formulation to recover the data without channel estimation. We prove that the global optimal solution to the proposed formulation can be made arbitrarily close to the transmitted data up to a phase-permutation ambiguity. We then propose an efficient parameter-free algorithm to solve the $ell_3$-norm problem and resolve the phase permutation ambiguity. We also derive the convergence rate in terms of key system parameters such as the number of transmitters and receivers, the channel noise power, and the channel sparsity level. Numerical experiments will show that the proposed scheme has superior performance with low computational complexity.
107 - Feng Shu , Lin Liu , Yumeng Zhang 2019
As a green and secure wireless transmission way, secure spatial modulation (SM) is becoming a hot research area. Its basic idea is to exploit both the index of activated transmit antenna and amplitude phase modulation (APM) signal to carry messages, improve security, and save energy. In this paper, we reviewed its crucial techniques: transmit antenna selection (TAS), artificial noise (AN) projection, power allocation (PA), and joint detection at desired receiver. To achieve the optimal performance of maximum likelihood (ML) detector, a deep-neural-network (DNN) joint detector is proposed to jointly infer the index of transmit antenna and signal constellation point with a lower-complexity. Here, each layer of DNN is redesigned to optimize the joint inference performance of two distinct types of information: transmit antenna index and signal constellation point. Simulation results show that the proposed DNN method performs 3dB better than the conventional DNN structure and is close to ML detection in the low and medium signal-to-noise ratio regions in terms of the bit error rate (BER) performance, but its complexity is far lower-complexity compared to ML. Finally, three key techniques TAS, PA, and AN projection at transmitter can be combined to make SM a true secure modulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا