ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Separation in Frozen Microscale Eutectic Indium-Gallium and its Explosion upon Remelting

70   0   0.0 ( 0 )
 نشر من قبل SeHo Kim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Owing to its low vapor pressure, low toxicity, high thermal and electrical conductivities, eutectic Ga-In (EGaIn) has shown a great potential for smart material applications in flexible devices, cooling in micro-devices, self-healing reconfigurable materials, and actuators. For such applications, EGaIn is maintained above its melting point, below which it undergoes solidification and complex phase separation. A scientific understanding of the structural and compositional evolution during thermal cycling could help further assess the application range of Ga and other low-melting-point fusible alloys. Here, we use an integrated suite of cryogenically-enabled advanced microscopy & microanalysis to better understand phase separation and (re)mixing processes in EGaIn. We reveal an overlooked thermal-stimulus-response behavior for frozen mesoscale EGaIn at cryogenic temperatures, with a sudden volume expansion observed during in-situ heat-cycling, associated with the immiscibility between Ga and In during cooling and the formation of metastable Ga phases. These results emphasize the importance of the kinetics of rejuvenation, and open new paths for EGaIn in sensor applications.



قيم البحث

اقرأ أيضاً

Nanoparticles made of non-noble metals such as gallium have recently attracted significant attention due to promising applications in UV plasmonics. To date, experiments have mostly focused on solid and liquid pure gallium particles immobilized on so lid substrates. However, for many applications, colloidal liquid-metal nanoparticle solutions are vital. Here, we experimentally demonstrate strong UV plasmonic resonances of eutectic gallium-indium (EGaIn) liquid-metal alloy nanoparticles suspended in ethanol. We rationalise experimental results through a theoretical model based on Mie theory. Our results contribute to the understanding of UV plasmon resonances in colloidal liquid-metal EGaIn nanoparticle suspensions. They will also enable further research into emerging applications of UV plasmonics in biomedical imaging, sensing, stretchable electronics, photoacoustics, and electrochemistry.
Indium gallium nitride films with nanocolumnar microstructure were deposited with varying indium content and substrate temperatures using plasma-enhanced evaporation on amorphous SiO2 substrates. FESEM and XRD results are presented, showing that more crystalline nanocolumnar microstructures can be engineered at lower indium compositions. Nanocolumn diameter and packing factor (void fraction) was found to be highly dependent on substrate temperature, with thinner and more closely packed nanocolumns observed at lower substrate temperatures.
We present an ab initio study of dopant-dopant interactions in beryllium-doped InGaAs. We consider defect formation energies of various interstitial and substitutional defects and their combinations. We find that all substitutional-substitutional int eractions can be neglected. On the other hand, interactions involving an interstitial defect are significant. Specially, interstitial Be is stabilized by about 0.9/1.0 eV in the presence of one/two BeGa substitutionals. Ga interstitial is also substantially stabilized by Be interstitials. Two Be interstitials can form a metastable Be-Be-Ga complex with a dissociation energy of 0.26 eV/Be. Therefore, interstitial defects and defect-defect interactions should be considered in accurate models of Be doped InGaAs. We suggest that In and Ga should be treated as separate atoms and not lumped into a single effective group III element, as has been done before. We identified dopant-centred states which indicate the presence of other charge states at finite temperatures, specifically, the presence of Beint+1 (as opposed to Beint+2 at 0K).
A roadblock in utilizing InGaAs for scaled-down electronic devices is its anomalous dopant diffusion behavior; specifically, existing models are not able to explain available experimental data on beryllium diffusion consistently. In this paper, we pr opose a comprehensive model, taking self-interstitial migration and Be interaction with Ga and In into account. Density functional theory (DFT) calculations are first used to calculate the energy parameters and charge states of possible diffusion mechanisms. Based on the DFT results, continuum modeling and kinetic Monte Carlo simulations are then performed. The model is able to reproduce experimental Be concentration profiles. Our results suggest that the Frank-Turnbull mechanism is not likely, instead, kick-out reactions are the dominant mechanism. Due to a large reaction energy difference, the Ga interstitial and the In interstitial play different roles in the kick-out reactions, contrary to what is usually assumed. The DFT calculations also suggest that the influence of As on Be diffusion may not be negligible.
In recent years, beta gallium oxide (beta-ce{Ga2O3}) has become the most investigated isomorph of gallium oxide polymorphs, due to the great potential it represents for applications in optoelectronics and photonics for solar technology, particularly in blind ultraviolet photodetector solar cells (SBUV) designs. To optimize its use in these applications, and to identify possible new features, knowledge of its fundamental properties is relevant. In this respect, optical, thermal and electronic properties of beta-ce{Ga2O3} have been studied expriementally, providing evidence of a wide-band inorganic and transparent semiconductor with a Kerr nonlinearity. Thermo-optical properties of the material, probed in SBUV sensing experiments, have highlighted a sizable heat diffusion characterized by a temperature gradient along the path of optical beams, quadratic in beam position and promoting a refractive-index change with temperature. The experimentally observed Kerr nonlinearity together with the thermally induced birefringence, point unambiguously to a possible formation of soliton molecules during propagation of high-intensity fields in beta-ce{Ga2O3}. To put this conjecture on a firm ground we propose a theoretical analysis, based on the cubic nonlinear Schroedinger equation in 1+1 spatial dimension, in which thermal lensing creates an effective potential quadratic in the coordinate of beam position. Using the non-isospectral inverse-scattering transform method, the exact one-soliton solution to the propagation equation is obtained. This solution features a bound state of entangled pulses forming a soliton molecule, in which pulses are more or less entangled depending on characteristic parameters of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا