ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal lensing-induced soliton molecules in beta-phase Gallium Oxide

127   0   0.0 ( 0 )
 نشر من قبل Alain Moise Dikande Pr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, beta gallium oxide (beta-ce{Ga2O3}) has become the most investigated isomorph of gallium oxide polymorphs, due to the great potential it represents for applications in optoelectronics and photonics for solar technology, particularly in blind ultraviolet photodetector solar cells (SBUV) designs. To optimize its use in these applications, and to identify possible new features, knowledge of its fundamental properties is relevant. In this respect, optical, thermal and electronic properties of beta-ce{Ga2O3} have been studied expriementally, providing evidence of a wide-band inorganic and transparent semiconductor with a Kerr nonlinearity. Thermo-optical properties of the material, probed in SBUV sensing experiments, have highlighted a sizable heat diffusion characterized by a temperature gradient along the path of optical beams, quadratic in beam position and promoting a refractive-index change with temperature. The experimentally observed Kerr nonlinearity together with the thermally induced birefringence, point unambiguously to a possible formation of soliton molecules during propagation of high-intensity fields in beta-ce{Ga2O3}. To put this conjecture on a firm ground we propose a theoretical analysis, based on the cubic nonlinear Schroedinger equation in 1+1 spatial dimension, in which thermal lensing creates an effective potential quadratic in the coordinate of beam position. Using the non-isospectral inverse-scattering transform method, the exact one-soliton solution to the propagation equation is obtained. This solution features a bound state of entangled pulses forming a soliton molecule, in which pulses are more or less entangled depending on characteristic parameters of the system.



قيم البحث

اقرأ أيضاً

We derive a dielectric function tensor model approach to render the optical response of monoclinic and triclinic symmetry materials with multiple uncoupled infrared and farinfrared active modes. We apply our model approach to monoclinic $beta$-Ga$_2$ O$_3$ single crystal samples. Surfaces cut under different angles from a bulk crystal, (010) and ($bar{2}$01), are investigated by generalized spectroscopic ellipsometry within infrared and farinfrared spectral regions. We determine the frequency dependence of 4 independent $beta$-Ga$_2$O$_3$ Cartesian dielectric function tensor elements by matching large sets of experimental data using a point by point data inversion approach. From matching our monoclinic model to the obtained 4 dielectric function tensor components, we determine all infared and farinfrared active transverse optic phonon modes with $A_u$ and $B_u$ symmetry, and their eigenvectors within the monoclinic lattice. We find excellent agreement between our model results and results of density functional theory calculations. We derive and discuss the frequencies of longitudinal optical phonons in $beta$-Ga$_2$O$_3$. We derive and report density and anisotropic mobility parameters of the free charge carriers within the tin doped crystals. We discuss the occurrence of longitudinal phonon plasmon coupled modes in $beta$-Ga$_2$O$_3$ and provide their frequencies and eigenvectors. We also discuss and present monoclinic dielectric constants for static electric fields and frequencies above the reststrahlen range, and we provide a generalization of the Lyddane-Sachs-Teller relation for monoclinic lattices with infrared and farinfrared active modes. We find that the generalized Lyddane-Sachs-Teller relation is fulfilled excellently for $beta$-Ga$_2$O$_3$.
We report the electrical resistivity, thermoelectric power, and thermal conductivity of single-crystalline and sintered samples of the 5d pyrochlore oxide CsW2O6. The electrical resistivity of the single crystal is 3 mohm cm at 295 K and gradually in creases with decreasing temperature above 215 K (Phase I). The thermoelectric power of the single-crystalline and sintered samples shows a constant value of approximately -60 uV K-1 in Phase I. These results reflect that the electron conduction by W 5d electrons in Phase I is incoherent and in the hopping regime, although a band gap does not open at the Fermi level. The thermal conductivity in Phase I of both samples is considerably low, which might be due to the rattling of Cs+ ions. In Phase II below 215 K, the electrical resistivity and the absolute value of thermoelectric power of both samples strongly increase with decreasing temperature, corresponding to a transition to a semiconducting state with a band gap open at the Fermi level, while the thermal conductivity in Phase II is smaller than that in Phase I.
Ensemble averages of a stochastic model show that, after a formation stage, the tips of active blood vessels in an angiogenic network form a moving two dimensional stable diffusive soliton, which advances toward sources of growth factor. Here we use methods of multiple scales to find the diffusive soliton as a solution of a deterministic equation for the mean density of active endothelial cells tips. We characterize the diffusive soliton shape in a general geometry, and find that its vector velocity and the trajectory of its center of mass along curvilinear coordinates solve appropriate collective coordinate equations. The vessel tip density predicted by the soliton compares well with that obtained by ensemble averages of simulations of the stochastic model.
We report, for the first time, the characterizations on optical nonlinearities of beta-phase gallium oxide (b{eta}-Ga2O3), where both (010) b{eta}-Ga2O3 and (-201) b{eta}-Ga2O3 were examined for two-photon absorption (TPA) coefficient, Kerr refractiv e index, and their polarization dependence. The wavelength dependence of the TPA coefficient and Kerr refractive index was estimated using a widely used analytical model. b{eta}-Ga2O3 exhibits a TPA coefficient of 1.2 cm/GW for (010) b{eta}-Ga2O3 and 0.58 cm/GW for (-201) b{eta}-Ga2O3. The Kerr refractive index is -2.14*10^(15) cm2/W for (010) b{eta}-Ga2O3 and -2.89*10^(15) cm2/W for (-201) b{eta}-Ga2O3. In addition, b{eta}-Ga2O3 shows stronger nonlinear optical anisotropy on the (-201) plane than on the (010) plane, possibly due to highly asymmetric crystal structure. Compared with that of gallium nitride (GaN), the TPA coefficient of b{eta}-Ga2O3 is 20 times smaller, and the Kerr refractive index of b{eta}-Ga2O3 is also found to be 4 to 5 times smaller. These results indicate that b{eta}-Ga2O3 has the potential for use in ultra-low loss waveguides and ultra-stable resonators and integrated photonics, especially in the UV and visible wavelength spectral range.
The ferroelectric (FE) control of electronic transport is one of the emerging technologies in oxide heterostructures. Many previous studies in FE tunnel junctions (FTJs) exploited solely the differences in the electrostatic potential across the FTJs that are induced by changes in the FE polarization direction. Here, we show that in practice the junction current ratios between the two polarization states can be further enhanced by the electrostatic modification in the correlated electron oxide electrodes, and that FTJs with nanometer thin layers can effectively produce a considerably large electroresistance ratio at room temperature. To understand these surprising results, we employed an additional control parameter, which is related to the crossing of electronic and magnetic phase boundaries of the correlated electron oxide. The FE-induced phase modulation at the heterointerface ultimately results in an enhanced electroresistance effect. Our study highlights that the strong coupling between degrees of freedom across heterointerfaces could yield versatile and novel applications in oxide electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا