ﻻ يوجد ملخص باللغة العربية
We propose an analytical approach to high-harmonic generation (HHG) for nonperturbative low-frequency and high-intensity fields based on the (Jeffreys-)Wentzel-Kramers-Brillouin (WKB) approximation. By properly taking into account Stokes phenomena of WKB solutions, we obtain wavefunctions that systematically include repetitive dynamics of production and acceleration of electron-hole pairs and quantum interference due to phase accumulation between different pair production times (St{u}ckelberg phase). Using the obtained wavefunctions without relying on any phenomenological assumptions, we explicitly compute electric current (including intra- and inter-band contributions) as the source of HHG for a massive Dirac system in (1+1)-dimensions under an ac electric field. We demonstrate that the WKB approximation agrees well with numerical results obtained by solving the time-dependent Schr{o}dinger equation and point out that the quantum interference is important in HHG. We also predict in the deep nonperturbative regime that (1) harmonic intensities oscillate with respect to electric-field amplitude and frequency, with a period determined by the St{u}ckelberg phase; (2) cutoff order of HHG is determined by the Keldysh parameter; and that (3) non-integer harmonics, controlled by the St{u}ckelberg phase, appear as a transient effect.
We study high-harmonic generation (HHG) in the one-dimensional Hubbard model in order to understand its relation to elementary excitations as well as the similarities and differences to semiconductors. The simulations are based on the infinite time-e
We study the multicritical behavior for the semimetal-insulator transitions on graphenes honeycomb lattice using the Gross-Neveu-Yukawa effective theory with two order parameters: the SO(3) (Heisenberg) order parameter describes the antiferromagnetic
We study the high harmonic generation (HHG) in Mott insulators using Floquet dynamical mean-field theory (DMFT). We show that the main origin of the HHG in Mott insulators is the doublon-holon recombination, and that the character of the HHG spectrum
In this work we present a model for the determination of the interaction energy for triplet and singlet states in atoms with incomplete filled shells. Our model includes the modification of the Coulombs law by the interaction between the magnetic mom
The unique properties of massless Dirac fermions lead to many remarkable phenomena, and a major challenge towards their technological exploitation is the development of materials with tunable Dirac states. Here we show that this goal may be achieved