ﻻ يوجد ملخص باللغة العربية
We study the multicritical behavior for the semimetal-insulator transitions on graphenes honeycomb lattice using the Gross-Neveu-Yukawa effective theory with two order parameters: the SO(3) (Heisenberg) order parameter describes the antiferromagnetic transition, and the $mathbb{Z}_2$ (Ising) order parameter describes the transition to a staggered density state. Their coupling induces multicritical behavior which determines the structure of the phase diagram close to the multicritical point. Depending on the number of fermion flavors $N_f$ and working in the perturbative regime in vicinity of three (spatial) dimensions, we observe first order or continuous phase transitions at the multicritical point. For the graphene case of $N_f=2$ and within our low order approximation, the phase diagram displays a tetracritical structure.
Based on the four-band continuum model, we study the ordered-current state (OCS) for electrons in bilayer graphene at the charge neutrality point. The present work resolves the puzzles that (a) the energy gap increases significantly with increasing t
Electrons in artificial lattices enable explorations of the impact of repulsive Coulomb interactions in a tunable system. We have trapped two-dimensional electrons belonging to a gallium arsenide quantum well in a nanofabricated lattice with honeycom
The unique properties of massless Dirac fermions lead to many remarkable phenomena, and a major challenge towards their technological exploitation is the development of materials with tunable Dirac states. Here we show that this goal may be achieved
We propose an analytical approach to high-harmonic generation (HHG) for nonperturbative low-frequency and high-intensity fields based on the (Jeffreys-)Wentzel-Kramers-Brillouin (WKB) approximation. By properly taking into account Stokes phenomena of
Magic-angle twisted bilayer graphene has recently become a thriving material platform realizing correlated electron phenomena taking place within its topological flat bands. Several numerical and analytical methods have been applied to understand the