ﻻ يوجد ملخص باللغة العربية
A covariant formulation for the Newton-Hooke particle is presented by following an algorithm developed by us cite{BMM1, BMM2, BMM3}. It naturally leads to a coupling with the Newton-Cartan geometry. From this result we provide an understanding of gravitation in a Newtonian geometric background. Using Diracs constrained analysis a canonical formulation for the Newton-Hooke covariant action is done in both gauge independent and gauge fixed approaches. While the former helps in identifying the various symmetries of the model, the latter is able to define the physical variables. From this analysis a path to canonical quantisation is traced and the Schroedinger equation is derived which is shown to satisfy various consistency checks. Some consequences of this equation are briefly mentioned.
We systematically derive an action for a nonrelativistic spinning partile in flat background and discuss its canonical formulation in both Lagrangian and Hamiltonian approaches. This action is taken as the starting point for deriving the correspondin
A detailed canonical treatment of a new action for a nonrelativistic particle coupled to background gravity, recently given by us, is performed both in the Lagrangian and Hamiltonian formulations. The equation of motion is shown to satisfy the geodes
We apply the 1+1+2 covariant approach to describe a general static and spherically symmetric relativistic stellar object which contains two interacting fluids. We then use the 1+1+2 equations to derive the corresponding Tolman-Oppenheimer-Volkoff (TO
Using our recent proposal for defining gauge invariant averages we give a general-covariant formulation of the so-called cosmological backreaction. Our effective covariant equations allow us to describe in explicitly gauge invariant form the way clas
We present a new formulation of the Einstein equations based on a conformal and traceless decomposition of the covariant form of the Z4 system. This formulation combines the advantages of a conformal decomposition, such as the one used in the BSSNOK