ﻻ يوجد ملخص باللغة العربية
We apply the 1+1+2 covariant approach to describe a general static and spherically symmetric relativistic stellar object which contains two interacting fluids. We then use the 1+1+2 equations to derive the corresponding Tolman-Oppenheimer-Volkoff (TOV) equations in covariant form in the isotropic, non-interacting case. These equations are used to obtain new exact solutions by means of direct resolution and reconstruction techniques. Finally, we show that the generating theorem known for the single fluid case can also be used to obtain two-fluid solutions from single fluid ones.
We introduce a rigorous and general framework to study systematically self-gravitating elastic materials within general relativity, and apply it to investigate the existence and viability, including radial stability, of spherically symmetric elastic
It might seem that a choice of a time coordinate in Hamiltonian formulations of general relativity breaks the full four-dimensional diffeomorphism covariance of the theory. This is not the case. We construct explicitly the complete set of gauge gener
We implement a spatially fixed mesh refinement under spherical symmetry for the characteristic formulation of General Relativity. The Courant-Friedrich-Levy (CFL) condition lets us deploy an adaptive resolution in (retarded-like) time, even for the n
We construct explicitly generators of projectable four-dimensional diffeomorphisms and triad rotation gauge symmetries in a model of vacuum gravity where the fundamental dynamical variables in a Palatini formulation are taken to be a lapse, shift, de
We consider two most popular definitions of velocities of remote objects in General Relativity. Our work has two motivations. From a research point of view, we generalize the formula connecting these two velocities in FRW metrics found by Chodorowski