ﻻ يوجد ملخص باللغة العربية
We conduct spectral observations of 138 superthin galaxies (STGs) with high radial-to-vertical stellar disk scales ratio with the Dual Imaging Spectrograph (DIS) on the 3.5m telescope at the Apache Point Observatory (APO) to obtain the ionized gas rotation curves with R ~ 5000 resolution. We also performed near infrared (NIR) H and Ks photometry for 18 galaxies with the NICFPS camera on the 3.5m telescope. The spectra, the NIR photometry and published optical and NIR photometry are used for modeling that utilizes the thickness of the stellar disk and rotation curves simultaneously. The projection and dust extinction effects are taken into account. We evaluate eight models that differ by their free parameters and constraints. As a result, we estimated masses and scale lengths of the galactic dark halos. We find systematic differences between the properties of our red and blue STGs. The blue STGs have a large fraction of dynamically under-evolved galaxies whose vertical velocity dispersion is low in both gas and stellar disks. The dark halo-to-disk scale ratio is shorter in the red STGs than in the blue ones, but in a majority of all STGs this ratio is under 2. The optical color $(r-i)$ of the superthin galaxies correlates with their rotation curve maximum, vertical velocity dispersion in stellar disks, and mass of the dark halo. We conclude that there is a threshold central surface density of 50 $M_{odot}$,pc$^{-2}$ below which we do not observe very thin, rotationally supported galactic disks.
We perform near-infrared photometry of a large sample of 49 superthin edge-on galaxies. These galaxies are selected based on optical photometry because of high radial-to-vertical scale ratio in their stellar disks. The Near Infrared (NIR) H and K obs
We present high resolution H{sc i} 21cm Giant Meterwave Radio Telescope (GMRT) observations of the superthin galaxy FGC1540 with a spatial resolution of 10$$ $times$ 8$$ and a spectral resolution of 1.73 kms$^{-1}$ and an rms noise of 0.9 mJy per bea
The formation and evolution of disk-dominated galaxies is difficult to explain, yet these objects exist. We therefore embarked on a study aimed at a better understanding of these enigmatic objects. We used data from the SDSS DR1 in order to identify
Studies of the stellar and the HI gas kinematics in dwarf and Low Surface Brightness (LSB) galaxies are essential for deriving constraints on their dark matter distribution. Moreover, a key component to unveil in the evolution of LSBs is why some of
We present a study of spectral properties of galaxies in underdense large-scale structures, voids. Our void galaxy sample (75,939 galaxies) is selected from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) with $rm z < 0.107$. We find that th