ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fourcade-Figueroa galaxy: a clearly disrupted superthin edge-on galaxy

341   0   0.0 ( 0 )
 نشر من قبل Juliana Saponara
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of the stellar and the HI gas kinematics in dwarf and Low Surface Brightness (LSB) galaxies are essential for deriving constraints on their dark matter distribution. Moreover, a key component to unveil in the evolution of LSBs is why some of them can be classified as superthin. We aim to investigate the nature of the proto-typical superthin galaxy Fourcade-Figueroa (FF), to understand the role played by the dark matter halo in forming its superthin shape and to investigate the mechanism that explains the observed disruption in the approaching side of the galaxy. Combining new HI 21-cm observations obtained with the Giant Metrewave Radio Telescope with archival data from the Australia Telescope Compact Array we were able to obtain sensitive HI observations of the FF galaxy. These data were modeled with a 3D tilted ring model in order to derive the rotation curve and surface brightness density of the neutral hydrogen. We subsequently used this model, combined with a stellar profile from the literature, to derive the radial distribution of the dark matter in the FF galaxy. For the FF galaxy the Navarro-Frenk-White dark matter distribution provides the best fit to the observed rotation curve. However, the differences with a pseudo-isothermal halo are small. Both models indicate that the core of the dark matter halo is compact. Even though the FF galaxy classifies as superthin, the gas thickness about the galactic centre exhibits a steep flaring of the gas which is in agreement with the edge of the stellar disk. As suggested previously in the literature, the compact dark matter halo might be the main responsible for the superthin structure of the stellar disk in FF. This idea is strengthened through the detection of the mentioned disruption; the fact that the galaxy is disturbed also seems to support the idea that it is not isolation that cause its superthin structure.



قيم البحث

اقرأ أيضاً

We present high resolution H{sc i} 21cm Giant Meterwave Radio Telescope (GMRT) observations of the superthin galaxy FGC1540 with a spatial resolution of 10$$ $times$ 8$$ and a spectral resolution of 1.73 kms$^{-1}$ and an rms noise of 0.9 mJy per bea m. We obtain its rotation curve as well as deprojected radial H{sc i} surface density profile by fitting a 3-dimensional tilted ring model directly to the H{sc i} data cubes by using the publicly-available software, Fully Automated Tirrific (FAT). We also present the rotation curve of FGC1540 derived from its optical spectroscopy study using the 6-m BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We use the rotation curve, the H{sc i} surface density profile together with Spitzer 3.6 $mu$m and the SDSS $i$--band data to construct the mass models for FGC1540. We find that both the Pseudo-isothermal (PIS), as well as Navarro-Frenk-White (NFW) dark matter (DM) halos, fit the observed rotation curve equally well. The PIS model indicates a compact dark matter halo ($R_{rm C}/R_{rm D}$ < 2), with the best-fitting core radius ($R_{rm C}$) approximately half the exponential stellar disc scale length ($R_{rm D}$), which is in agreement with the mass models of superthin galaxies studied earlier in the literature. Since the vertical thickness of the galactic stellar disc is determined by a balance between the net gravitational field and the velocity dispersion in the vertical direction, the compact dark matter halo may be primarily responsible in regulating the superthin vertical structure of the stellar disc in FGC1540 as was found in case of the superthin galaxy UGC7321.
We perform near-infrared photometry of a large sample of 49 superthin edge-on galaxies. These galaxies are selected based on optical photometry because of high radial-to-vertical scale ratio in their stellar disks. The Near Infrared (NIR) H and K obs ervations were conducted with the cryogenic-cooled camera ASTRONIRCAM on the 2.5m telescope at the Caucasus Mountain Observatory of Lomonosov Moscow State University. A majority of galaxies in our sample show comparable or better photometric depth than the Sloan Digital Sky Survey (SDSS) optical images. We estimate the structural parameters of stellar disks in the galaxies and find that the NIR scale height of stellar disks is comparable to that estimated from the optical, SDSS g, r and i, whereas the H and K scale length of the stellar disks is significantly shorter than in the g, r and i. We investigate if a realistic distribution of dust alone can explain the difference in the scale length and find that in the majority of the galaxies the radial variation of the stellar population is actually responsible for the color distribution. The latter suggests a younger age of the disks periphery, and the inside out building up of stellar disks in the superthin galaxies.
64 - Alis J. Deason 2020
We use cosmological simulations of isolated Milky Way-mass galaxies, as well as Local Group analogues, to define the edge -- a caustic manifested in a drop in density or radial velocity -- of Galactic-sized haloes, both in dark matter and in stars. I n the dark matter, we typically identify two caustics: the outermost caustic located at ~1.4r_200m corresponding to the splashback radius, and a second caustic located at ~0.6r_200m which likely corresponds to the edge of the virialized material which has completed at least two pericentric passages. The splashback radius is ill defined in Local Group type environments where the halos of the two galaxies overlap. However, the second caustic is less affected by the presence of a companion, and is a more useful definition for the boundary of the Milky Way halo. Curiously, the stellar distribution also has a clearly defined caustic, which, in most cases, coincides with the second caustic of the dark matter. This can be identified in both radial density and radial velocity profiles, and should be measurable in future observational programmes. Finally, we show that the second caustic can also be identified in the phase-space distribution of dwarf galaxies in the Local Group. Using the current dwarf galaxy population, we predict the edge of the Milky Way halo to be 292 +/- 61 kpc.
The edge-on galaxy NGC 891 was probed using near-infrared (NIR) imaging polarimetry in the H-band (1.6 um) with the Mimir instrument on the 1.8 m Perkins Telescope. Polarization was detected with signal-to-noise ratio greater than three out to a surf ace brightness of 18.8 mag arcsec^-2. The unweighted average and dispersion in polarization percentage (P) across the full disk were 0.7% and 0.3%, respectively, and the same quantities for polarization position angle (P.A.) were 12 deg and 19 deg, respectively. At least one polarization null point, where P falls nearly to zero, was detected in the NE disk but not the SW disk. Several other asymmetries in P between the northern and southern disk were found and may be related to spiral structure. Profiles of P and P.A. along the minor axis of NGC 891 suggest a transition from magnetic (B) field tracing dichroic polarization near the disk mid-plane to scattering dominated polarization off the disk mid-plane. A comparison between NIR P.A. and radio (3.6 cm) synchrotron polarization P.A. values revealed similar B-field orientations in the central-northeast region, which suggests that the hot plasma and cold, star-forming interstellar medium may share a common B-field. Disk-perpendicular polarizations previously seen at optical wavelengths are likely caused by scattered light from the bright galaxy center and are unlikely to be tracing poloidal B-fields in the outer disk.
We present a kinematical study of the nearly edge-on galaxy ESO 379-G006 that shows the existence of extraplanar ionized gas. With Fabry-Perot spectroscopy at H-alpha, we study the kinematics of ESO 379-G006 using velocity maps and position-velocity diagrams parallel to the major and to the minor axis of the galaxy. We build the rotation curve of the disk and discuss the role of projection effects due to the fact of viewing this galaxy nearly edge-on. The twisting of the isovelocities in the radial velocity field of the disk of ESO 379-G006 as well as the kinematic asymmetries found in some position-velocity diagrams parallel to the minor axis of the galaxy suggest the existence of deviations to circular motions in the disk that can be modeled and explained with the inclusion of a radial inflow probably generated by a bar or by spiral arms. We succeeded in detecting extraplanar Diffuse Ionized Gas in this galaxy. At the same time, from the analysis of position-velocity diagrams, we found some evidence that the extraplanar gas could lag in rotation velocity with respect to the midplane rotation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا