ﻻ يوجد ملخص باللغة العربية
Optical tweezers, the three-dimensional confinement of a nanoparticle by a strongly focused beam of light, have been widely employed in investigating biomaterial nanomechanics, nanoscopic fluid properties, and ultrasensitive detections in various environments such as inside living cells, at gigapascal pressure, and under high vacuum. However, the cryogenic operation of solid-state-particle optical tweezers is poorly understood. In this study, we demonstrate the optical trapping of metallic and dielectric nanoparticles in superfluid helium below 2 K, which is two orders of magnitude lower than in the previous experiments. We prepare the nanoparticles via in-situ laser ablation. The nanoparticles are stably trapped with a single laser beam tightly focused in the superfluid helium. Our method provides a new approach for studying nanoscopic quantum hydrodynamic effects and interactions between quantum fluids and classical objects.
Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. Howe
ZnO microspheres fabricated via laser ablation in superfluid helium were found to have bubble-like voids. Even a microsphere demonstrating clear whispering gallery mode resonances in the luminescence had voids. Our analysis confirmed that the voids a
Critical Casimir forces emerge between objects, such as colloidal particles, whenever their surfaces spatially confine the fluctuations of the order parameter of a critical liquid used as a solvent. These forces act at short but microscopically large
Optical dipole-traps are used in various scientific fields, including classical optics, quantum optics and biophysics. Here, we propose and implement a dipole-trap for nanoparticles that is based on focusing from the full solid angle with a deep para
All light has structure, but only recently it has become possible to construct highly controllable and precise potentials so that most laboratories can harness light for their specific applications. In this chapter, we review the emerging techniques