ترغب بنشر مسار تعليمي؟ اضغط هنا

Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium

158   0   0.0 ( 0 )
 نشر من قبل Yosuke Minowa
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ZnO microspheres fabricated via laser ablation in superfluid helium were found to have bubble-like voids. Even a microsphere demonstrating clear whispering gallery mode resonances in the luminescence had voids. Our analysis confirmed that the voids are located away from the surface and have negligible or little effect on the whispering gallery mode resonances since the electromagnetic energy localizes near the surface of these microspheres. The existence of the voids indicates that helium gas or any evaporated target material was present within the molten microparticles during the microsphere formation.

قيم البحث

اقرأ أيضاً

Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. Howe ver measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.
A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and sta ble enough to be used for spectroscopy, as demonstrated on beam-depletion spectra of lithium atoms attached to helium nanodroplets. For the first time, helium droplets are doped with high temperature refractory materials such as titanium and tantalum. Doping with the non-volatile DNA basis Guanine is found to be efficient and a number of oligomers are detected.
Optical tweezers, the three-dimensional confinement of a nanoparticle by a strongly focused beam of light, have been widely employed in investigating biomaterial nanomechanics, nanoscopic fluid properties, and ultrasensitive detections in various env ironments such as inside living cells, at gigapascal pressure, and under high vacuum. However, the cryogenic operation of solid-state-particle optical tweezers is poorly understood. In this study, we demonstrate the optical trapping of metallic and dielectric nanoparticles in superfluid helium below 2 K, which is two orders of magnitude lower than in the previous experiments. We prepare the nanoparticles via in-situ laser ablation. The nanoparticles are stably trapped with a single laser beam tightly focused in the superfluid helium. Our method provides a new approach for studying nanoscopic quantum hydrodynamic effects and interactions between quantum fluids and classical objects.
In this letter, we study how coupling between AuNPs and ZnO thin films affects their emission properties. The emission intensity of ZnO thin films changes when Al2O3 spacer layer of different thickness are included in ZnO/Au films, consistent with th eoretical predictions. The emission properties are also controlled using the polarization of the excitation source. Emission properties depended on the polarization of the excitation source because of the surface plasmon resonance of AuNPs. The photoluminescence anisotropy of these systems shows that enhanced photoluminescence can be achieved through coupling of the emission from ZnO with the surface plasmon resonance of AuNPs.
Impurity injection into superfluid helium is a simple yet unique method with diverse applications, including high-precision spectroscopy, quantum computing, nano/micro materialsynthesis, and flow visualisation. Quantised vortices are believed to play a major role in the interaction between superfluid helium and light impurities. However, the basic principle governing the interaction is still controversial for dense materials such as semiconductor and metal impurities. Herein, we provide experimental evidence of the attraction of the dense silicon nanoparticles to the quantised vortex cores. We prepared the silicon nanoparticles via in-situ laser ablation. Following laser ablation, we observed that the silicon nanoparticles formed curved-filament-like structures, indicative of quantised vortex cores. We also observed that two accidentally intersecting quantised vortices exchanged their parts, a phenomenon called quantised vortex reconnection. This behaviour closely matches the dynamical scaling of reconnections. Our results provide a new method for visualising and studying impurity-quantised vortex interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا