ﻻ يوجد ملخص باللغة العربية
We used high-precision radial velocity measurements of FGKM stars to determine the occurrence of giant planets as a function of orbital separation spanning 0.03-30 au. Giant planets are more prevalent at orbital distances of 1-10 au compared to orbits interior or exterior of this range. The increase in planet occurrence at $sim$1 au by a factor of $sim$4 is highly statistically significant. A fall-off in giant planet occurrence at larger orbital distances is favored over models with flat or increasing occurrence. We measure $14.1^{+2.0}_{-1.8}$ giant planets per 100 stars with semi-major axes of 2-8 au and $8.9^{+3.0}_{-2.4}$ giant planets per 100 stars in the range 8-32 au, a decrease in giant planet occurrence with increasing orbital separation that is significant at the $sim$2$sigma$ level. We find that the occurrence rate of sub-Jovian planets (0.1-1 Jupiter masses) is also enhanced for 1-10 au orbits. This suggests that lower mass planets may share the formation or migration mechanisms that drive the increased prevalence near the water-ice line for their Jovian counterparts. Our measurements of cold gas giant occurrence are consistent with the latest results from direct imaging surveys and gravitational lensing surveys despite different stellar samples. We corroborate previous findings that giant planet occurrence increases with stellar mass and metallicity.
We present a high-precision radial velocity (RV) survey of 719 FGKM stars, which host 164 known exoplanets and 14 newly discovered or revised exoplanets and substellar companions. This catalog updated the orbital parameters of known exoplanets and lo
The size of a planet is an observable property directly connected to the physics of its formation and evolution. We used precise radius measurements from the California-Kepler Survey (CKS) to study the size distribution of 2025 $textit{Kepler}$ plane
We describe a joint high contrast imaging survey for planets at Keck and VLT of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets
Probing the connection between a stars metallicity and the presence and properties of any associated planets offers an observational link between conditions during the epoch of planet formation and mature planetary systems. We explore this connection
We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters f