ترغب بنشر مسار تعليمي؟ اضغط هنا

The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades

146   0   0.0 ( 0 )
 نشر من قبل Lee Rosenthal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a high-precision radial velocity (RV) survey of 719 FGKM stars, which host 164 known exoplanets and 14 newly discovered or revised exoplanets and substellar companions. This catalog updated the orbital parameters of known exoplanets and long-period candidates, some of which have decades-longer observational baselines than they did upon initial detection. The newly discovered exoplanets range from warm sub-Neptunes and super-Earths to cold gas giants. We present the catalog sample selection criteria, as well as over 100,000 radial velocity measurements, which come from the Keck-HIRES, APF-Levy, and Lick-Hamilton spectrographs. We introduce the new RV search pipeline RVSearch that we used to generate our planet catalog, and we make it available to the public as an open-source Python package. This paper is the first study in a planned series that will measure exoplanet occurrence rates and compare exoplanet populations, including studies of giant planet occurrence beyond the water ice line, and eccentricity distributions to explore giant planet formation pathways. We have made public all radial velocities and associated data that we use in this catalog.

قيم البحث

اقرأ أيضاً

We report on the current status of the radial velocity monitoring of nearby OB stars to look for binaries with small mass ratios. The combined data of radial velocities using the domestic 1-2 m-class telescopes seems to confirm the variations of radi al velocities in a few weeks for four out of ten target single-lined spectroscopic binaries. More data are needed to estimate the exact periods and mass distributions.
We used high-precision radial velocity measurements of FGKM stars to determine the occurrence of giant planets as a function of orbital separation spanning 0.03-30 au. Giant planets are more prevalent at orbital distances of 1-10 au compared to orbit s interior or exterior of this range. The increase in planet occurrence at $sim$1 au by a factor of $sim$4 is highly statistically significant. A fall-off in giant planet occurrence at larger orbital distances is favored over models with flat or increasing occurrence. We measure $14.1^{+2.0}_{-1.8}$ giant planets per 100 stars with semi-major axes of 2-8 au and $8.9^{+3.0}_{-2.4}$ giant planets per 100 stars in the range 8-32 au, a decrease in giant planet occurrence with increasing orbital separation that is significant at the $sim$2$sigma$ level. We find that the occurrence rate of sub-Jovian planets (0.1-1 Jupiter masses) is also enhanced for 1-10 au orbits. This suggests that lower mass planets may share the formation or migration mechanisms that drive the increased prevalence near the water-ice line for their Jovian counterparts. Our measurements of cold gas giant occurrence are consistent with the latest results from direct imaging surveys and gravitational lensing surveys despite different stellar samples. We corroborate previous findings that giant planet occurrence increases with stellar mass and metallicity.
Probing the connection between a stars metallicity and the presence and properties of any associated planets offers an observational link between conditions during the epoch of planet formation and mature planetary systems. We explore this connection by analyzing the metallicities of Kepler target stars and the subset of stars found to host transiting planets. After correcting for survey incompleteness, we measure planet occurrence: the number of planets per 100 stars with a given metallicity $M$. Planet occurrence correlates with metallicity for some, but not all, planet sizes and orbital periods. For warm super-Earths having $P = 10-100$ days and $R_P = 1.0-1.7~R_E$, planet occurrence is nearly constant over metallicities spanning $-$0.4 dex to +0.4 dex. We find 20 warm super-Earths per 100 stars, regardless of metallicity. In contrast, the occurrence of warm sub-Neptunes ($R_P = 1.7-4.0~R_E$) doubles over that same metallicity interval, from 20 to 40 planets per 100 stars. We model the distribution of planets as $d f propto 10^{beta M} d M$, where $beta$ characterizes the strength of any metallicity correlation. This correlation steepens with decreasing orbital period and increasing planet size. For warm super-Earths $beta = -0.3^{+0.2}_{-0.2}$, while for hot Jupiters $beta = +3.4^{+0.9}_{-0.8}$. High metallicities in protoplanetary disks may increase the mass of the largest rocky cores or the speed at which they are assembled, enhancing the production of planets larger than 1.7 $R_E$. The association between high metallicity and short-period planets may reflect disk density profiles that facilitate the inward migration of solids or higher rates of planet-planet scattering.
We present an analysis of 1524 spectra of Vega spanning 10 years, in which we search for periodic radial velocity variations. A signal with a periodicity of 0.676 days and a semi-amplitude of ~10 m/s is consistent with the rotation period measured ov er much shorter time spans by previous spectroscopic and spectropolarimetric studies, confirming the presence of surface features on this A0 star. The timescale of evolution of these features can provide insight into the mechanism that sustains the weak magnetic fields in normal A type stars. Modeling the radial velocities with a Gaussian process using a quasi-periodic kernel suggests that the characteristic spot evolution timescale is ~180 days, though we cannot exclude the possibility that it is much longer. Such long timescales may indicate the presence of failed fossil magnetic fields on Vega. TESS data reveal Vegas photometric rotational modulation for the first time, with a total amplitude of only 10 ppm, and a comparison of the spectroscopic and photometric amplitudes suggest the surface features may be dominated by bright plages rather than dark spots. For the shortest orbital periods, transit and radial velocity injection recovery tests exclude the presence of transiting planets larger than 2 Earth radii and most non-transiting giant planets. At long periods, we combine our radial velocities with direct imaging from the literature to produce detection limits for Vegan planets and brown dwarfs out to distances of 15 au. Finally, we detect a candidate radial velocity signal with a period of 2.43 days and a semi-amplitude of 6 m/s. If caused by an orbiting companion, its minimum mass would be ~20 Earth masses; because of Vegas pole-on orientation, this would correspond to a Jovian planet if the orbit is aligned with the stellar spin. We discuss the prospects for confirmation of this candidate planet.
Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting ne ar orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 21 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 d and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity - period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا