ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibrium Chiral Magnetic Effect: spatial inhomogeneity, finite temperature, interactions

104   0   0.0 ( 0 )
 نشر من قبل Mikhail Zubkov Dr
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss equilibrium relativistic fermionic systems in lattice regularization, and extend the consideration of chiral magnetic effect to systems with spatial inhomogeneity and finite temperature. Besides, we take into account interactions due to exchange by gauge bosons. We find that the equilibrium chiral magnetic conductivity remains equal to zero.


قيم البحث

اقرأ أيضاً

152 - Shota Imaki , Zebin Qiu 2020
We scrutinize the novel chiral transport phenomenon driven by spacetime torsion, namely the chiral torsional effect (CTE). We calculate the torsion-induced chiral currents with finite temperature, density and curvature in the most general torsional g ravity theory. The conclusion complements the previous study on the CTE by including curvature and substantiates the relation between the CTE and the Nieh-Yan anomaly. We also analyze the response of chiral torsional current to an external electromagnetic field. The resulting topological current is analogous to that in the axion electrodynamics.
We analyze the Chiral Magnetic Effect for non-Hermitian fermionic systems using the biorthogonal formulation of quantum mechanics. In contrast to the Hermitian chiral counterparts, we show that the Chiral Magnetic Effect may take place in thermal equ ilibrium of an open non-Hermitian system with, generally, massive fermions. The key observation is that for non-Hermitian charged systems, there is no strict charge conservation as understood in the Hermitian case, so the Bloch theorem preventing currents in the thermodynamic limit in equilibrium does not apply.
Topological charge changing transitions can induce chirality in the quark-gluon plasma by the axial anomaly. We study the equilibrium response of the quark-gluon plasma in such a situation to an external magnetic field. To mimic the effect of the top ological charge changing transitions we will introduce a chiral chemical potential. We will show that an electromagnetic current is generated along the magnetic field. This is the Chiral Magnetic Effect. We compute the magnitude of this current as a function of magnetic field, chirality, temperature, and baryon chemical potential.
In this work we explore the effects of a weak magnetic field and a thermal bath on the decay process of a neutral scalar boson into two charged scalar bosons. Our findings indicate that magnetic field inhibits while temperature enhances the pair prod uction. The employed formalism allows us to isolate the contribution of magnetic fields in vacuum, leading to a separate analysis of the effects of different ingredients. This is essential since the analytical computation of the decay width necessarily needs of some approximation and the results that can be found in the literature are not always coincident. We perform the calculation in vacuum by two different weak field approximations. The particle pair production in vacuum was found to coincide with finite temperature behavior, which is opposite to results obtained by other authors in scenarios that involve neutral particles decaying into a pair of charged fermions. Among other differences between these scenarios, we traced that the analytical structure of the self-energy imposed by the spin of particles involved in the process is determinant in the behavior of the decay rate with the magnetic field.
We compute anomalous transport phenomena sourced by vector and axial magnetic fields in out of equilibrium setups produced by Vaidya background metrics in holography. We use generalized Vaidya metrics that include momentum relaxation induced by massl ess scalar fields. While the background metric and gauge field show formally instantaneous thermalization the chiral magnetic effect has significantly large equilibration times. We study how the equilibration of the chiral magnetic effect depends on the length of the Vaidya quench and the momentum relaxation parameter. These results shed some light on aspects of the chiral magnetic effect in out of equilibrium situations as the quark gluon plasma produced in heavy ion collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا