ترغب بنشر مسار تعليمي؟ اضغط هنا

Out of equilibrium chiral magnetic effect and momentum relaxation in holography

137   0   0.0 ( 0 )
 نشر من قبل Karl Landsteiner
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute anomalous transport phenomena sourced by vector and axial magnetic fields in out of equilibrium setups produced by Vaidya background metrics in holography. We use generalized Vaidya metrics that include momentum relaxation induced by massless scalar fields. While the background metric and gauge field show formally instantaneous thermalization the chiral magnetic effect has significantly large equilibration times. We study how the equilibration of the chiral magnetic effect depends on the length of the Vaidya quench and the momentum relaxation parameter. These results shed some light on aspects of the chiral magnetic effect in out of equilibrium situations as the quark gluon plasma produced in heavy ion collisions.

قيم البحث

اقرأ أيضاً

We study the chiral vortical effect far from equilibrium in a strongly coupled holographic field theory. Rotation is represented as a perturbation via a gravito-magnetic field on top of a five-dimensional charged AdS Vaidya metric. We also introduce a momentum relaxation mechanism by linear scalar field backgrounds and study the CVE dynamics as function of the charges, temperature and momentum relaxation. The far from equilibrium behavior shows that the CVE builds up with a significant delay in time compared to the quasi instantaneous equilibration of the background metric. We also pay special attention to the effects of the gravitational contribution to the axial anomaly in the CVE of the axial current. We develop an analytic estimate of this delay and also compute the quasi-normal modes near equilibrium which determine the late time ring down.
178 - Jinfeng Liao 2016
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion c ollisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|vec{bf B}|sim m_pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.
We consider photonic vortical effect, i.e. the difference of the flows of left- and right-handed photons along the vector of angular velocity in rotating photonic medium. Two alternative frameworks to evaluate the effect are considered, both of which have already been tried in the literature. First, the standard thermal fied theory and, alternatively, Hawking-radiation-type derivation. In our earlier attempt to compare the two approaches, we found a crucial factor of two difference. Here we revisit the problem, paying more attention to details of infrared regularizations. We find out that introduction of an infinitesimal mass of the vector field brings the two ways of evaluating the chiral vortical effect into agreement with each other. Some implications, both on the theoretical and phenomenological sides, are mentioned.
The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impact s on the charge-dependent two-particle correlator $gamma_{q_1q_2}=<cos(phi_1+phi_2-2psi_{RP})>$ (see main text for definition) which was used for the detection of the chiral magnetic effect (CME). Compared with Au + Au collisions, we find that the in-plane electric fields in Cu + Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if $gamma_{q_1q_2}$ is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu + Au collisions to test CME and understand the mechanisms that underlie $gamma_{q_1q_2}$.
We analyze the Chiral Magnetic Effect for non-Hermitian fermionic systems using the biorthogonal formulation of quantum mechanics. In contrast to the Hermitian chiral counterparts, we show that the Chiral Magnetic Effect may take place in thermal equ ilibrium of an open non-Hermitian system with, generally, massive fermions. The key observation is that for non-Hermitian charged systems, there is no strict charge conservation as understood in the Hermitian case, so the Bloch theorem preventing currents in the thermodynamic limit in equilibrium does not apply.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا