ﻻ يوجد ملخص باللغة العربية
With the explosive growth of video data, video summarization, which attempts to seek the minimum subset of frames while still conveying the main story, has become one of the hottest topics. Nowadays, substantial achievements have been made by supervised learning techniques, especially after the emergence of deep learning. However, it is extremely expensive and difficult to collect human annotation for large-scale video datasets. To address this problem, we propose a convolutional attentive adversarial network (CAAN), whose key idea is to build a deep summarizer in an unsupervised way. Upon the generative adversarial network, our overall framework consists of a generator and a discriminator. The former predicts importance scores for all frames of a video while the latter tries to distinguish the score-weighted frame features from original frame features. Specifically, the generator employs a fully convolutional sequence network to extract global representation of a video, and an attention-based network to output normalized importance scores. To learn the parameters, our objective function is composed of three loss functions, which can guide the frame-level importance score prediction collaboratively. To validate this proposed method, we have conducted extensive experiments on two public benchmarks SumMe and TVSum. The results show the superiority of our proposed method against other state-of-the-art unsupervised approaches. Our method even outperforms some published supervised approaches.
We propose a hybrid recurrent Video Colorization with Hybrid Generative Adversarial Network (VCGAN), an improved approach to video colorization using end-to-end learning. The VCGAN addresses two prevalent issues in the video colorization domain: Temp
Partial Domain Adaptation (PDA) is a practical and general domain adaptation scenario, which relaxes the fully shared label space assumption such that the source label space subsumes the target one. The key challenge of PDA is the issue of negative t
Video summarization aims to select representative frames to retain high-level information, which is usually solved by predicting the segment-wise importance score via a softmax function. However, softmax function suffers in retaining high-rank repres
Given a grayscale photograph, the colorization system estimates a visually plausible colorful image. Conventional methods often use semantics to colorize grayscale images. However, in these methods, only classification semantic information is embedde
Exploiting the inner-shot and inter-shot dependencies is essential for key-shot based video summarization. Current approaches mainly devote to modeling the video as a frame sequence by recurrent neural networks. However, one potential limitation of t