ﻻ يوجد ملخص باللغة العربية
Viscoelastic flows through porous media become unstable and chaotic beyond critical flow conditions, impacting industrial and biological processes. Recently, Walkama textit{et al.} [Phys. Rev. Lett. textbf{124}, 164501 (2020)] have shown that geometric disorder greatly suppresses such chaotic dynamics. We demonstrate experimentally that geometric disorder textit{per se} is not the reason for this suppression, and that disorder can also promote choatic fluctuations, given a slightly modified initial condition. The results are explained by the effect of disorder on the occurrence of stagnation points exposed to the flow field, which depends on the initially ordered geometric configuration.
The flow of viscoelastic fluids in porous media is encountered in many practical applications, such as in the enhanced oil recovery process or in the groundwater remediation. Once the flow rate exceeds a critical value in such flows, an elastic insta
We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier-Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution. In this model, the materia
We present a theoretical framework for immiscible incompressible two-phase flow in homogeneous porous media that connects the distribution of local fluid velocities to the average seepage velocities. By dividing the pore area along a cross-section tr
Hypothesis Control of capillary flow through porous media has broad practical implications. However, achieving accurate and reliable control of such processes by tuning the pore size or by modification of interface wettability remains challenging. He
Immiscible fluid-fluid displacement in porous media is of great importance in many engineering applications, such as enhanced oil recovery, agricultural irrigation, and geologic CO2 storage. Fingering phenomena, induced by the interface instability,