ترغب بنشر مسار تعليمي؟ اضغط هنا

Tailoring porous media for controllable capillary flow

100   0   0.0 ( 0 )
 نشر من قبل Dorian Hanaor
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hypothesis Control of capillary flow through porous media has broad practical implications. However, achieving accurate and reliable control of such processes by tuning the pore size or by modification of interface wettability remains challenging. Here we propose that the flow of liquid by capillary penetration can be accurately adjusted by tuning the geometry of porous media and develop numerical method to achieve this. Methodologies On the basis of Darcys law, a general framework is proposed to facilitate the control of capillary flow in porous systems by tailoring the geometric shape of porous structures. A numerical simulation approach based on finite element method is also employed to validate the theoretical prediction. Findings A basic capillary component with a tunable velocity gradient is designed according to the proposed framework. By using the basic component, two functional capillary elements, namely, (i) flow amplifier and (ii) flow resistor, are demonstrated. Then, multi functional fluidic devices with controllable capillary flow are realized by integrating the designed capillary elements. All the theoretical designs are validated by numerical simulations. Finally, it is shown that the proposed model can be extended to three dimensional designs of porous media



قيم البحث

اقرأ أيضاً

161 - Si Suo , Yixiang Gan 2020
Immiscible fluid-fluid displacement in porous media is of great importance in many engineering applications, such as enhanced oil recovery, agricultural irrigation, and geologic CO2 storage. Fingering phenomena, induced by the interface instability, are commonly encountered during displacement processes and somehow detrimental since such hydrodynamic instabilities can significantly reduce displacement efficiency. In this study, we report a possible adjustment in pore geometry which aims to suppress the capillary fingering in porous media with hierarchical structures. Through pore-scale simulations and theoretical analysis, we demonstrate and quantify combined effects of wettability and hierarchical geometry on displacement patterns, showing a transition from fingering to compact mode. Our results suggest that with a higher porosity of the 2nd-order porous structure, the displacement can keep compact across a wider range of wettability conditions. Combined with our previous work on viscous fingering in such media, we can provide a complete insight into the fluid-fluid displacement control in hierarchical porous media, across a wide range of flow conditions from capillary- to viscous-dominated modes. The conclusions of this work can benefit the design of microfluidic devices, as well as tailoring porous media for better fluid displacement efficiency at the field scale.
We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier-Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution. In this model, the materia l behaves as a viscoelastic solid when unyielded, and as a viscoelastic Oldroyd-B fluid for stresses higher than the yield stress. The porous media is made of a symmetric array of cylinders, and we solve the flow in one periodic cell. We find that the solution is time-dependent even at low Reynolds numbers as we observe oscillations in time of the unyielded region especially at high Bingham numbers. The volume of the unyielded region slightly decreases with the Reynolds number and strongly increases with the Bingham number; up to 70% of the total volume is unyielded for the highest Bingham numbers considered here. The flow is mainly shear dominated in the yielded region, while shear and elongational flow are equally distributed in the unyielded region. We compute the relation between the pressure drop and the flow rate in the porous medium and present an empirical closure as function of the Bingham and Reynolds numbers. The apparent permeability, normalized with the case of Newtonian fluids, is shown to be greater than 1 at low Bingham numbers, corresponding to lower pressure drops due to the flow elasticity, and smaller than 1 for high Bingham numbers, indicating larger dissipation in the flow owing to the presence of the yielded regions. Finally we investigate the effect of the Weissenberg number on the distribution of the unyielded regions and on the pressure gradient.
Diverse processes rely on the viscous flow of polymer solutions through porous media. In many cases, the macroscopic flow resistance abruptly increases above a threshold flow rate in a porous medium---but not in bulk solution. The reason why has been a puzzle for over half a century. Here, by directly visualizing the flow in a transparent 3D porous medium, we demonstrate that this anomalous increase is due to the onset of an elastic instability. We establish that the energy dissipated by the unstable flow fluctuations, which vary across pores, generates the anomalous increase in flow resistance through the entire medium. Thus, by linking the pore-scale onset of unstable flow to macroscopic transport, our work provides generally-applicable guidelines for predicting and controlling polymer solution flows.
We present a theoretical framework for immiscible incompressible two-phase flow in homogeneous porous media that connects the distribution of local fluid velocities to the average seepage velocities. By dividing the pore area along a cross-section tr ansversal to the average flow direction up into differential areas associated with the local flow velocities, we construct a distribution function that allows us not only to re-establish existing relationships between the seepage velocities of the immiscible fluids, but also to find new relations between their higher moments. We support and demonstrate the formalism through numerical simulations using a dynamic pore-network model for immiscible two-phase flow with two- and three-dimensional pore networks. Our numerical results are in agreement with the theoretical considerations.
The Brinkman equation has found great popularity in modelling the interfacial flow between free fluid and a porous medium. However, it is still unclear how to determine an appropriate effective Brinkman viscosity without resolving the flow at the por e scale. Here, we propose to determine the Brinkman viscosity for rough porous media from the interface slip length and the interior permeability. Both slip and permeability can be determined from unit-cell analysis, thus enabling an a priori estimate of the effective viscosity. By comparing the velocity distribution in the porous material predicted from the Brinkman equation with that obtained from pore-scale resolved simulations, we show that modelling errors are $sim 10%$ and not larger than $40%$. We highlight the physical origins of the obtained errors and demonstrate that the Brinkman model can be much more accurate for irregular porous structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا