ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionized gas properties of the extreme starburst galaxy Haro 11. Temperature and metal abundance discrepancies

135   0   0.0 ( 0 )
 نشر من قبل Veronica Menacho
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use high quality VLT/MUSE data to study the kinematics and the ionized gas properties of Haro 11, a well known starburst merger system and the closest confirmed Lyman continuum leaking galaxy. We present results from integrated line maps, and from maps in three velocity bins comprising the blueshifted, systemic and redshifted emission. The kinematic analysis reveals complex velocities resulting from the interplay of virial motions and momentum feedback. Star formation happens intensively in three compact knots (knots A, B and C), but one, knot C, dominates the energy released in supernovae. The halo is characterised by low gas density and extinction, but with large temperature variations, coincident with fast shock regions. Moreover, we find large temperature discrepancies in knot C, when using different temperature-sensitive lines. The relative impact of the knots in the metal enrichment differs. While knot B is strongly enriching its closest surrounding, knot C is likely the main distributor of metals in the halo. In knot A, part of the metal enriched gas seems to escape through low density channels towards the south. We compare the metallicities from two methods and find large discrepancies in knot C, a shocked area, and the highly ionized zones, that we partially attribute to the effect of shocks. This work shows, that traditional relations developed from averaged measurements or simplified methods, fail to probe the diverse conditions of the gas in extreme environments. We need robust relations that include realistic models where several physical processes are simultaneously at work.



قيم البحث

اقرأ أيضاً

Here we report the first spatially resolved spectroscopic study for the galaxy PHL293B using the high-resolution GTC/MEGARA IFU. PHL293B is a local, extremely metal-poor, high ionization galaxy. This makes PHL 293B an excellent analogue for galaxies in the early Universe. The MEGARA aperture (~12.5x 11.3) covers the entire PHL 293B main body and its far-reaching ionized gas. We created and discussed maps of all relevant emission lines, line ratios and physical-chemical properties of the ionized ISM. The narrow emission gas appears to be ionized mainly by massive stars according to the observed diganostic line ratios, regardless of the position across the MEGARA aperture. We detected low intensity broad emission components and blueshifted absorptions in the Balmer lines (H$alpha$,H$beta$) which are located in the brightest zone of the galaxy ISM. A chemically homogeneity, across hundreds of parsecs, is observed in O/H. We take the oxygen abundance 12+log(O/H)=7.64 $pm$ 0.06 derived from the PHL293B integrated spectrum as the representative metallicity for the galaxy. Our IFU data reveal for the first time that the nebular HeII4686 emission from PHL 293B is spatially extended and coincident with the ionizing stellar cluster, and allow us to compute its absolute HeII ionizing photon flux. Wolf-Rayet bumps are not detected excluding therefore Wolf-Rayet stars as the main HeII excitation source. The origin of the nebular HeII4686 is discussed.
118 - Ryan P. Keenan 2017
Identifying the mechanism by which high energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly$alpha$ emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity AGN. To clarify the LyC source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [OIII]/[OII] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead, we identify a high-ionization region extending over at least 1 kpc from Knot A. Knot A shows evidence of an extremely young age ($lesssim 1$ Myr), perhaps containing very massive stars ($>100$ M$_odot$). It is weak in Ly$alpha$, so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly$alpha$ emission.
We present a multiwavelength study of the AGN-host starburst galaxy PKS 0529-549 at z~2.6. We use (1) new ALMA observations of the dust continuum and of the [CI] 370 um line, tracing molecular gas, (2) SINFONI spectroscopy of the [OIII] 5007 Ang line , tracing ionized gas, and (3) ATCA radio continuum images, tracing synchrotron emission. Both [CI] and [OIII] show regular velocity gradients, but their systemic velocities and position angles differ by ~300 km/s and ~30 degrees, respectively. The [CI] is consistent with a rotating disc, aligned with the dust and stellar continuum, while the [OIII] likely traces an outflow, aligned with two AGN-driven radio lobes. We model the [CI] cube using 3D disc models, which give best-fit rotation velocities V~310 km/s and velocity dispersions sigma<30 km/s. Hence, the [CI] disc has V/sigma>10 and is not particularly turbulent, similar to local galaxy discs. The dynamical mass (~10^11 Msun) is comparable to the baryonic mass within the errors. This suggests that baryons dominate the inner galaxy dynamics, similar to massive galaxies at z=0. Remarkably, PKS 0529-549 lies on the local baryonic Tully-Fisher relation, indicating that at least some massive galaxies are already in place and kinematically relaxed at z~2.6. This work highlights the potential of the [CI] line to trace galaxy dynamics at high z, as well as the importance of multiwavelength data to interpret gas kinematics.
Lyman continuum and line emission are thought to be important agents in the reionization of the early universe. Haro 11 is a rare example of a local galaxy in which Ly$alpha$ and continuum emission have escaped without being absorbed or scattered by ambient gas and dust, potentially as a consequence of feedback from its X-ray sources. We build on our previous Chandra analysis of Haro 11 by analyzing three new observations. Our subpixel spatial analysis reveals that the two previously known X-ray sources are each better modelled as ensembles of at least 2 unresolved point sources. The spatial variability of these components reveals X1 as a dynamical system where one luminous X-ray source ($L_{rm X} sim 10^{41}$ erg s$^{-1}$) fades as a secondary source begins to flare. These might be intermediate mass black holes or low luminosity active galactic nuclei near the center of the galaxy in the process of merging. Optical emission line diagnostics drawn from the literature suggest that while the galaxy as a whole is consistent with starburst signatures of ionization, the individual regions wherein the X-ray sources reside are more consistent with AGN/composite classification. The sources in X2 exhibit some degree of flux variability. X2a dominates the flux of this region during most observations ($L_{rm X} sim 6 times 10^{40}$ erg s$^{-1}$), and gives the only evidence in the galaxy of a soft Ultra-Luminous X-ray source capable of high energy winds, which we suggest are responsible for allowing the coincident Ly$alpha$ emission to escape.
Context. Spatially resolved observations of the ionized and molecular gas are critical for understanding the physical processes that govern the interstellar medium (ISM) in galaxies. Aims. To study the morpho-kinematic properties of the ionized and m olecular gas in three dusty starburst galaxies at $z = 0.12-0.17$ to explore the relation between molecular ISM gas phase dynamics and the star-formation activity. Methods. We analyse $sim$kpc-scale ALMA CO(1--0) and seeing limited SINFONI Paschen-$alpha$ observations. We use a dynamical mass model, which accounts for beam-smearing effects, to constrain the CO-to-H$_2$ conversion factor. Results. One starburst galaxy shows irregular morphology which may indicate a major merger, while the other two systems show disc-like morpho-kinematics. The two disc-like starbursts show molecular gas velocity dispersion values comparable with that seen in local LIRG/ULIRGs, but in an ISM with molecular gas fraction and surface density values consistent to that reported for local star-forming galaxies. These molecular gas velocity dispersion values can be explained by assuming vertical pressure equilibrium. The star-formation activity is correlated with the molecular gas content suggesting depletion times of the order of $sim 0.1-1$ Gyr. The star formation rate surface density ($Sigma_{rm SFR}$) correlates with the ISM pressure set by self-gravity ($P_{rm grav}$) following a power law with an exponent close to 0.8. Conclusions. In dusty disc-like starburst galaxies, our data support the scenario in which the molecular gas velocity dispersion values are driven by the ISM pressure set by self-gravity, responsible to maintain the vertical pressure balance. The correlation between $Sigma_{rm SFR}$ and $P_{rm grav}$ suggests that, in these dusty starbursts galaxies, the star formation activity arises as a consequence of the ISM pressure balance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا