ﻻ يوجد ملخص باللغة العربية
We address in this study the problem of learning a summary causal graph on time series with potentially different sampling rates. To do so, we first propose a new temporal mutual information measure defined on a window-based representation of time series. We then show how this measure relates to an entropy reduction principle that can be seen as a special case of the Probabilistic Raising Principle. We finally combine these two ingredients in a PC-like algorithm to construct the summary causal graph. This algorithm is evaluated on several datasets that shows both its efficacy and efficiency.
Standard causal discovery methods must fit a new model whenever they encounter samples from a new underlying causal graph. However, these samples often share relevant information - for instance, the dynamics describing the effects of causal relations
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious
Going beyond correlations, the understanding and identification of causal relationships in observational time series, an important subfield of Causal Discovery, poses a major challenge. The lack of access to a well-defined ground truth for real-world
The advent of the Big Data hype and the consistent recollection of event logs and real-time data from sensors, monitoring software and machine configuration has generated a huge amount of time-varying data in about every sector of the industry. Rule-
Existing methods for structure discovery in time series data construct interpretable, compositional kernels for Gaussian process regression models. While the learned Gaussian process model provides posterior mean and variance estimates, typically the