ﻻ يوجد ملخص باللغة العربية
The knowledge of the ages of stars hosting exoplanets allows us to obtain an overview on the evolution of exoplanets and understand the mechanisms affecting their life. The measurement of the ages of stars in the Galaxy is usually affected by large uncertainties. An exception are the stellar clusters: for their coeval members, born from the same molecular cloud, ages can be measured with extreme accuracy. In this context, the project PATHOS is providing candidate exoplanets orbiting members of stellar clusters and associations through the analysis of high-precision light curves obtained with cutting-edge tools. In this work, we exploited the data collected during the second year of the TESS mission. We extracted, analysed, and modelled the light curves of $sim 90000$ stars in open clusters located in the northern ecliptic hemisphere in order to find candidate exoplanets. We measured the frequencies of candidate exoplanets in open clusters for different orbital periods and planetary radii, taking into account the detection efficiency of our pipeline and the false positive probabilities of our candidates. We analysed the Age--$R_{rm P}$ distribution of candidate and confirmed exoplanets with periods $<100$ days and well constrained ages. While no peculiar trends are observed for Jupiter-size and (super-)Earth-size planets, we found that objects with $4,R_{rm Earth} lesssim R_{rm P} lesssim 13,R_{rm Earth}$ are concentrated at ages $lesssim 200$ Myr; different scenarios (atmospheric losses, migration, etc.) are considered to explain the observed age-$R_{rm P}$ distribution.
The TESS mission will survey ~85 % of the sky, giving us the opportunity of extracting high-precision light curves of millions of stars, including stellar cluster members. In this work, we present our project A PSF-based Approach to TESS High quality
The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from {it TESS} mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare
Context: Precise chemical abundances coupled with reliable ages are key ingredients to understand the chemical history of our Galaxy. Open Clusters (OCs) are useful for this purpose because they provide ages with good precision. Aims: The aim of th
(shorter version)The aim of this work is to search for planets around intermediate-mass stars in open clusters by using RV data obtained with HARPS from an extensive survey with more than 15 years of observations for a sample of 142 giant stars in 17
Previous work concerning planet formation around low-mass stars has often been limited to large planets and individual systems. As current surveys routinely detect planets down to terrestrial size in these systems, a more holistic approach that refle