ترغب بنشر مسار تعليمي؟ اضغط هنا

A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS) -- IV. Candidate exoplanets around stars in open clusters: frequency and age-planetary radius distribution

91   0   0.0 ( 0 )
 نشر من قبل Domenico Nardiello Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The knowledge of the ages of stars hosting exoplanets allows us to obtain an overview on the evolution of exoplanets and understand the mechanisms affecting their life. The measurement of the ages of stars in the Galaxy is usually affected by large uncertainties. An exception are the stellar clusters: for their coeval members, born from the same molecular cloud, ages can be measured with extreme accuracy. In this context, the project PATHOS is providing candidate exoplanets orbiting members of stellar clusters and associations through the analysis of high-precision light curves obtained with cutting-edge tools. In this work, we exploited the data collected during the second year of the TESS mission. We extracted, analysed, and modelled the light curves of $sim 90000$ stars in open clusters located in the northern ecliptic hemisphere in order to find candidate exoplanets. We measured the frequencies of candidate exoplanets in open clusters for different orbital periods and planetary radii, taking into account the detection efficiency of our pipeline and the false positive probabilities of our candidates. We analysed the Age--$R_{rm P}$ distribution of candidate and confirmed exoplanets with periods $<100$ days and well constrained ages. While no peculiar trends are observed for Jupiter-size and (super-)Earth-size planets, we found that objects with $4,R_{rm Earth} lesssim R_{rm P} lesssim 13,R_{rm Earth}$ are concentrated at ages $lesssim 200$ Myr; different scenarios (atmospheric losses, migration, etc.) are considered to explain the observed age-$R_{rm P}$ distribution.


قيم البحث

اقرأ أيضاً

The TESS mission will survey ~85 % of the sky, giving us the opportunity of extracting high-precision light curves of millions of stars, including stellar cluster members. In this work, we present our project A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS), aimed at searching and characterise candidate exoplanets and variable stars in stellar clusters using our innovative method for the extraction of high-precision light curves of stars located in crowded environments. Our technique of light-curve extraction involves the use of empirical Point Spread Functions (PSFs), an input catalogue and neighbour-subtraction. The PSF-based approach allows us to minimise the dilution effects in crowded environments and to extract high-precision photometry for stars in the faint regime (G>13). For this pilot project, we extracted, corrected, and analysed the light curves of 16641 stars located in a dense region centred on the globular cluster 47 Tuc. We were able to reach the TESS magnitude T~16.5 with a photometric precision of ~1 % on the 6.5-hour timescale; in the bright regime we were able to detect transits with depth of ~34 parts per million. We searched for variables and candidate transiting exoplanets. Our pipeline detected one planetary candidate orbiting a main sequence star in the Galactic field. We analysed the period-luminosity distribution for red-giant stars of 47 Tuc and the eclipsing binaries in the field. Light curves are uploaded on the Mikulski Archive for Space Telescopes under the project PATHOS.
126 - O. Maryeva , K. Bicz , C. Xia 2020
The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from {it TESS} mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type objects. Of all flares, 63% were detected in a sample of cool stars ($T_{rm eff}<5000$~K), and 29% -- in stars of spectral type G, while 23% in K-type stars and approximately 34% of all detected flares are in M-type stars. Using the FLATWRM (FLAre deTection With Ransac Method) flare finding algorithm, we estimated parameters of flares and rotation period of detected flare stars. The flare with the largest amplitude appears on the M3 type EQ,Cha star. Statistical analysis did not reveal any direct correlation between ages, rotation periods and flaring activity.
Context: Precise chemical abundances coupled with reliable ages are key ingredients to understand the chemical history of our Galaxy. Open Clusters (OCs) are useful for this purpose because they provide ages with good precision. Aims: The aim of th is work is to investigate the relations of different chemical abundance ratios vs age traced by red clump (RC) stars in OCs. Methods: We analyze a large sample of 209 reliable members in 47 OCs with available high-resolution spectroscopy. We applied a differential line-by-line analysis to provide a comprehensive chemical study of 25 chemical species. This sample is among the largest samples of OCs homogeneously characterized in terms of atmospheric parameters, detailed chemistry, and ages. Results: In our metallicity range (-0.2<[M/H]<+0.2) we find that while most Fe-peak and alpha elements have flat dependence with age, the s-process elements show decreasing trends with increasing age with a remarkable knee at 1 Gyr. For Ba, Ce, Y, Mo and Zr we find a plateau at young ages (< 1 Gyr). We investigate the relations of all possible combinations among the computed chemical species with age. We find 19 combinations with significant slopes, including [Y/Mg] and [Y/Al]. The ratio [Ba/alpha] is the one with the most significant correlations found. Conclusions: We find that the [Y/Mg] relation found in the literature using Solar twins is compatible with the one found here in the Solar neighbourhood. The age-abundance relations show larger scatter for clusters at large distances (d>1 kpc) than for the Solar neighbourhood, particularly in the outer disk. We conclude that these relations need to be understood also in terms of the complexity of the chemical space introduced by the Galactic dynamics, on top of pure nucleosynthetic arguments, especially out of the local bubble.
(shorter version)The aim of this work is to search for planets around intermediate-mass stars in open clusters by using RV data obtained with HARPS from an extensive survey with more than 15 years of observations for a sample of 142 giant stars in 17 open clusters. We present the discovery of a periodic RV signal compatible with the presence of a planet candidate in the 1.15 Gyr open cluster IC4651 orbiting the 2.06 M$_odot$ star No. 9122. If confirmed, the planet candidate would have a minimum mass of 7.2 M$_{J}$ and a period of 747 days. However, we also find that the FWHM of the CCF varies with a period close to the RV, casting doubts on the planetary nature of the signal. We also provide refined parameters for the previously discovered planet around NGC2423 No. 3 but show evidence that the BIS of the CCF is correlated with the RV during some of the observing periods. This fact advises us that this might not be a real planet and that the RV variations could be caused by stellar activity and/or pulsations. Finally, we show that the previously reported signal by a brown dwarf around NGC4349 No. 127 is presumably produced by stellar activity modulation. The long-term monitoring of several red giants in open clusters has allowed us to find periodic RV variations in several stars. However, we also show that the follow-up of this kind of stars should last more than one orbital period to detect long-term signals of stellar origin. This work warns that although it is possible to detect planets around red giants, large-amplitude, long-period RV modulations do exist in such stars that can mimic the presence of an orbiting planetary body. Therefore, we need to better understand how such RV modulations behave as stars evolve along the RGB and perform a detailed study of all the possible stellar-induced signals (e.g. spots, pulsations, granulation) to comprehend the origin of RV variations.
Previous work concerning planet formation around low-mass stars has often been limited to large planets and individual systems. As current surveys routinely detect planets down to terrestrial size in these systems, a more holistic approach that refle cts their diverse architectures is timely. Here, we investigate planet formation around low-mass stars and identify differences in the statistical distribution of planets. We compare the synthetic planet populations to observed exoplanets. We used the Generation III Bern model of planet formation and evolution to calculate synthetic populations varying the central star from solar-like stars to ultra-late M dwarfs. This model includes planetary migration, N-body interactions between embryos, accretion of planetesimals and gas, and long-term contraction and loss of the gaseous atmospheres. We find that temperate, Earth-sized planets are most frequent around early M dwarfs and more rare for solar-type stars and late M dwarfs. The planetary mass distribution does not linearly scale with the disk mass. The reason is the emergence of giant planets for M*>0.5 Msol, which leads to the ejection of smaller planets. For M*>0.3 Msol there is sufficient mass in the majority of systems to form Earth-like planets, leading to a similar amount of Exo-Earths going from M to G dwarfs. In contrast, the number of super-Earths and larger planets increases monotonically with stellar mass. We further identify a regime of disk parameters that reproduces observed M-dwarf systems such as TRAPPIST-1. However, giant planets around late M dwarfs such as GJ 3512b only form when type I migration is substantially reduced. We quantify the stellar mass dependence of multi-planet systems using global simulations of planet formation and evolution. The results compare well to current observational data and predicts trends that can be tested with future observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا