ﻻ يوجد ملخص باللغة العربية
The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from {it TESS} mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type objects. Of all flares, 63% were detected in a sample of cool stars ($T_{rm eff}<5000$~K), and 29% -- in stars of spectral type G, while 23% in K-type stars and approximately 34% of all detected flares are in M-type stars. Using the FLATWRM (FLAre deTection With Ransac Method) flare finding algorithm, we estimated parameters of flares and rotation period of detected flare stars. The flare with the largest amplitude appears on the M3 type EQ,Cha star. Statistical analysis did not reveal any direct correlation between ages, rotation periods and flaring activity.
From sector 1--40 {em TESS} observations, 20 new roAp stars, 97 ostensibly non-peculiar stars with roAp-like frequencies (the roA variables) and 617 $delta$~Scuti stars with independent frequencies typical of roAp stars were found. There is no criter
All-sky photometric time-series missions have allowed for the monitoring of thousands of young ($t_{rm age} < 800$Myr) to understand the evolution of stellar activity. Here we developed a convolutional neural network (CNN), $texttt{stella}$, specific
Blue straggler stars are exotic objects present in all stellar environments whose nature and formation channels are still partially unclear. They seem to be particularly abundant in open clusters (OCs), thus offering a unique chance to tackle these p
Superflares on solar-type stars has been a rapidly developing field ever since the launch of $it Kepler$. Over the years, there have been several studies investigating the statistics of these explosive events. In this study, we present a statistical
The Transiting Exoplanet Survey Satellite (TESS) is providing precise time-series photometry for most star clusters in the solar neighborhood. Using the TESS images, we have begun a Cluster Difference Imaging Photometric Survey (CDIPS), in which we a