ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic and Variational Recommendation Denoising

107   0   0.0 ( 0 )
 نشر من قبل Yu Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning from implicit feedback is one of the most common cases in the application of recommender systems. Generally speaking, interacted examples are considered as positive while negative examples are sampled from uninteracted ones. However, noisy examples are prevalent in real-world implicit feedback. A noisy positive example could be interacted but it actually leads to negative user preference. A noisy negative example which is uninteracted because of unawareness of the user could also denote potential positive user preference. Conventional training methods overlook these noisy examples, leading to sub-optimal recommendation. In this work, we propose probabilistic and variational recommendation denoising for implicit feedback. Through an empirical study, we find that different models make relatively similar predictions on clean examples which denote the real user preference, while the predictions on noisy examples vary much more across different models. Motivated by this observation, we propose denoising with probabilistic inference (DPI) which aims to minimize the KL-divergence between the real user preference distributions parameterized by two recommendation models while maximize the likelihood of data observation. We then show that DPI recovers the evidence lower bound of an variational auto-encoder when the real user preference is considered as the latent variables. This leads to our second learning framework denoising with variational autoencoder (DVAE). We employ the proposed DPI and DVAE on four state-of-the-art recommendation models and conduct experiments on three datasets. Experimental results demonstrate that DPI and DVAE significantly improve recommendation performance compared with normal training and other denoising methods. Codes will be open-sourced.



قيم البحث

اقرأ أيضاً

77 - Zhi Bian , Shaojun Zhou , Hao Fu 2021
For better user satisfaction and business effectiveness, more and more attention has been paid to the sequence-based recommendation system, which is used to infer the evolution of users dynamic preferences, and recent studies have noticed that the ev olution of users preferences can be better understood from the implicit and explicit feedback sequences. However, most of the existing recommendation techniques do not consider the noise contained in implicit feedback, which will lead to the biased representation of user interest and a suboptimal recommendation performance. Meanwhile, the existing methods utilize item sequence for capturing the evolution of user interest. The performance of these methods is limited by the length of the sequence, and can not effectively model the long-term interest in a long period of time. Based on this observation, we propose a novel CTR model named denoising user-aware memory network (DUMN). Specifically, the framework: (i) proposes a feature purification module based on orthogonal mapping, which use the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback; (ii) designs a user memory network to model the long-term interests in a fine-grained way by improving the memory network, which is ignored by the existing methods; and (iii) develops a preference-aware interactive representation component to fuse the long-term and short-term interests of users based on gating to understand the evolution of unbiased preferences of users. Extensive experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines. The code of DUMN model has been uploaded as an additional material.
Robust recommendation aims at capturing true preference of users from noisy data, for which there are two lines of methods have been proposed. One is based on noise injection, and the other is to adopt the generative model Variational Auto-encoder (V AE). However, the existing works still face two challenges. First, the noise injection based methods often draw the noise from a fixed noise distribution given in advance, while in real world, the noise distributions of different users and items may differ from each other due to personal behaviors and item usage patterns. Second, the VAE based models are not expressive enough to capture the true preference since VAE often yields an embedding space of a single modal, while in real world, user-item interactions usually exhibit multi-modality on user preference distribution. In this paper, we propose a novel model called Dual Adversarial Variational Embedding (DAVE) for robust recommendation, which can provide personalized noise reduction for different users and items, and capture the multi-modality of the embedding space, by combining the advantages of VAE and adversarial training between the introduced auxiliary discriminators and the variational inference networks. The extensive experiments conducted on real datasets verify the effectiveness of DAVE on robust recommendation.
Grocery recommendation is an important recommendation use-case, which aims to predict which items a user might choose to buy in the future, based on their shopping history. However, existing methods only represent each user and item by single determi nistic points in a low-dimensional continuous space. In addition, most of these methods are trained by maximizing the co-occurrence likelihood with a simple Skip-gram-based formulation, which limits the expressive ability of their embeddings and the resulting recommendation performance. In this paper, we propose the Variational Bayesian Context-Aware Representation (VBCAR) model for grocery recommendation, which is a novel variational Bayesian model that learns the user and item latent vectors by leveraging basket context information from past user-item interactions. We train our VBCAR model based on the Bayesian Skip-gram framework coupled with the amortized variational inference so that it can learn more expressive latent representations that integrate both the non-linearity and Bayesian behaviour. Experiments conducted on a large real-world grocery recommendation dataset show that our proposed VBCAR model can significantly outperform existing state-of-the-art grocery recommendation methods.
Category recommendation for users on an e-Commerce platform is an important task as it dictates the flow of traffic through the website. It is therefore important to surface precise and diverse category recommendations to aid the users journey throug h the platform and to help them discover new groups of items. An often understated part in category recommendation is users proclivity to repeat purchases. The structure of this temporal behavior can be harvested for better category recommendations and in this work, we attempt to harness this through variational inference. Further, to enhance the variational inference based optimization, we initialize the optimizer at better starting points through the well known Metapath2Vec algorithm. We demonstrate our results on two real-world datasets and show that our model outperforms standard baseline methods.
To address the long-standing data sparsity problem in recommender systems (RSs), cross-domain recommendation (CDR) has been proposed to leverage the relatively richer information from a richer domain to improve the recommendation performance in a spa rser domain. Although CDR has been extensively studied in recent years, there is a lack of a systematic review of the existing CDR approaches. To fill this gap, in this paper, we provide a comprehensive review of existing CDR approaches, including challenges, research progress, and future directions. Specifically, we first summarize existing CDR approaches into four types, including single-target CDR, multi-domain recommendation, dual-target CDR, and multi-target CDR. We then present the definitions and challenges of these CDR approaches. Next, we propose a full-view categorization and new taxonomies on these approaches and report their research progress in detail. In the end, we share several promising research directions in CDR.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا