ﻻ يوجد ملخص باللغة العربية
Learning from implicit feedback is one of the most common cases in the application of recommender systems. Generally speaking, interacted examples are considered as positive while negative examples are sampled from uninteracted ones. However, noisy examples are prevalent in real-world implicit feedback. A noisy positive example could be interacted but it actually leads to negative user preference. A noisy negative example which is uninteracted because of unawareness of the user could also denote potential positive user preference. Conventional training methods overlook these noisy examples, leading to sub-optimal recommendation. In this work, we propose probabilistic and variational recommendation denoising for implicit feedback. Through an empirical study, we find that different models make relatively similar predictions on clean examples which denote the real user preference, while the predictions on noisy examples vary much more across different models. Motivated by this observation, we propose denoising with probabilistic inference (DPI) which aims to minimize the KL-divergence between the real user preference distributions parameterized by two recommendation models while maximize the likelihood of data observation. We then show that DPI recovers the evidence lower bound of an variational auto-encoder when the real user preference is considered as the latent variables. This leads to our second learning framework denoising with variational autoencoder (DVAE). We employ the proposed DPI and DVAE on four state-of-the-art recommendation models and conduct experiments on three datasets. Experimental results demonstrate that DPI and DVAE significantly improve recommendation performance compared with normal training and other denoising methods. Codes will be open-sourced.
For better user satisfaction and business effectiveness, more and more attention has been paid to the sequence-based recommendation system, which is used to infer the evolution of users dynamic preferences, and recent studies have noticed that the ev
Robust recommendation aims at capturing true preference of users from noisy data, for which there are two lines of methods have been proposed. One is based on noise injection, and the other is to adopt the generative model Variational Auto-encoder (V
Grocery recommendation is an important recommendation use-case, which aims to predict which items a user might choose to buy in the future, based on their shopping history. However, existing methods only represent each user and item by single determi
Category recommendation for users on an e-Commerce platform is an important task as it dictates the flow of traffic through the website. It is therefore important to surface precise and diverse category recommendations to aid the users journey throug
To address the long-standing data sparsity problem in recommender systems (RSs), cross-domain recommendation (CDR) has been proposed to leverage the relatively richer information from a richer domain to improve the recommendation performance in a spa