ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative neutrino masses, lepton flavor mixing and muon $g-2$ in a leptoquark model

205   0   0.0 ( 0 )
 نشر من قبل Di Zhang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Di Zhang




اسأل ChatGPT حول البحث

We propose a leptoquark model with two scalar leptoquarks $S^{}_1 left( bar{3},1,frac{1}{3} right)$ and $widetilde{R}^{}_2 left(3,2,frac{1}{6} right)$ to give a combined explanation of neutrino masses, lepton flavor mixing and the anomaly of muon $g-2$, satisfying the constraints from the radiative decays of charged leptons. The neutrino masses are generated via one-loop corrections resulting from a mixing between $S^{}_1$ and $widetilde{R}^{}_2$. With a set of specific textures for the leptoquark Yukawa coupling matrices, the neutrino mass matrix possesses an approximate $mu$-$tau$ reflection symmetry with $left( M^{}_ u right)^{}_{ee} = 0$ only in favor of the normal neutrino mass ordering. We show that this model can successfully explain the anomaly of muon $g-2$ and current experimental neutrino oscillation data under the constraints from the radiative decays of charged leptons.


قيم البحث

اقرأ أيضاً

The stringent experimental bound on $mu rightarrow e gamma$ is compatible with a simultaneous and sizable new physics contribution to the electron and muon anomalous magnetic moments $(g-2)_ell$ ($ell=e,,mu$), only if we assume a non-trivial flavor s tructure of the dipole operator coefficients. We propose a mechanism in which the realization of the $(g-2)_ell$ correction is manifestly related to the mass generation through a flavor symmetry. A radiative flavon correction to the fermion mass gives a contribution to the anomalous magnetic moment. In this framework, we introduce a chiral enhancement from a non-trivial $mathcal{O}(1)$ quartic coupling of the scalar potential. We show that the muon and electron anomalies can be simultaneously explained in a vast region of the parameter space with predicted vector-like mediators of masses as large as $M_chiin [0.6,2.5]$~TeV.
126 - Wen Yin 2021
The recent experimental status, including the confirmation of the muon $g-2$ anomaly at Fermilab, indicates a Beyond Standard Model (BSM) satisfying the following properties: 1) it enhances the $g-2$ 2) suppresses flavor violations, such as $mu to e gamma$, 3) suppresses CP violations, such as the electron electric dipole moment (EDM). In this letter, I show that if the masses of heavy leptons are generated radiatively, the eigenbasis of the mass matrix and higher dimensional photon operators can be automatically aligned. As a result, the muon $g-2$ is enhanced but the EDM of the electron and $mu to e gamma$ rate are suppressed. Phenomenology and applications of the mechanism to the B-physics anomalies are argued.
In the minimal Standard Model (SM) with four generations (the so called SM4) and in standard two Higgs doublets model (2HDM) setups, e.g., the type II 2HDM with four fermion generations, the contribution of the 4th family heavy leptons to the muon ma gnetic moment is suppressed and cannot accommodate the measured $ sim 3 sigma$ access with respect to the SM prediction. We show that in a 2HDM for the 4th generation (the 4G2HDM), which we view as a low energy effective theory for dynamical electroweak symmetry breaking, with one of the Higgs doublets coupling only to the 4th family leptons and quarks (thus effectively addressing their large masses), the loop exchanges of the heavy 4th generation neutrino can account for the measured value of the muon anomalous magnetic moment. We also discuss the sensitivity of the lepton flavor violating decays $mu to e gamma$ and $tau to mu gamma$ and of the decay $B_s to mu mu$ to the new couplings which control the muon g-2 in our model.
89 - Xin Wang 2021
We present an economical model where an $S^{}_1$ leptoquark and an anomaly-free $U(1)^{}_X$ gauge symmetry with $X = B^{}_3-2L^{}_mu/3-L^{}_tau/3$ are introduced, to account for the muon anomalous magnetic moment $a^{}_mu equiv (g^{}_mu-2)$ and flavo r puzzles including $R^{}_{K^{(ast)_{}}}$ and $R^{}_{D^{(ast)_{}}}$ anomalies together with quark and lepton flavor mixing. The $Z^prime_{}$ gauge boson associated with the $U(1)^{}_X$ symmetry is responsible for the $R^{}_{K^{(ast)_{}}}$ anomaly. Meanwhile, the specific flavor mixing patterns of quarks and leptons can be generated after the spontaneous breakdown of the $U(1)^{}_X$ gauge symmetry via the Froggatt-Nielsen mechanism. The $S^{}_1$ leptoquark which is also charged under the $U(1)^{}_X$ gauge symmetry can simultaneously explain the latest muon $(g-2)$ result and the $R^{}_{D^{(ast)_{}}}$ anomaly. In addition, we also discuss several other experimental constraints on our model.
We present a model of radiative neutrino masses which also resolves anomalies reported in $B$-meson decays, $R_{D^{(star)}}$ and $R_{K^{(star)}}$, as well as in muon $g-2$ measurement, $Delta a_mu$. Neutrino masses arise in the model through loop dia grams involving TeV-scale leptoquark (LQ) scalars $R_2$ and $S_3$. Fits to neutrino oscillation parameters are obtained satisfying all flavor constraints which also explain the anomalies in $R_{D^{(star)}}$, $R_{K^{(star)}}$ and $Delta a_mu$ within $1, sigma$. An isospin-3/2 Higgs quadruplet plays a crucial role in generating neutrino masses; we point out that the doubly-charged scalar contained therein can be produced in the decays of the $S_3$ LQ, which enhances its reach to 1.1 (6.2) TeV at $sqrt s=14$ TeV high-luminosity LHC ($sqrt s=100$ TeV FCC-hh). We also present flavor-dependent upper limits on the Yukawa couplings of the LQs to the first two family fermions, arising from non-resonant dilepton ($pp rightarrow ell^+ ell^-$) processes mediated by $t$-channel LQ exchange, which for 1 TeV LQ mass, are found to be in the range $(0.15 - 0.36)$. These limits preclude any explanation of $R_{D^{(star)}}$ through LQ-mediated $B$-meson decays involving $ u_e$ or $ u_mu$ in the final state. We also find that the same Yukawa couplings responsible for the chirally-enhanced contribution to $Delta a_mu$ give rise to new contributions to the SM Higgs decays to muon and tau pairs, with the modifications to the corresponding branching ratios being at (2-6)% level, which could be tested at future hadron colliders, such as HL-LHC and FCC-hh.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا