ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Neural Networks for Knowledge Enhanced Visual Representation of Paintings

281   0   0.0 ( 0 )
 نشر من قبل Athanasios Efthymiou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose ArtSAGENet, a novel multimodal architecture that integrates Graph Neural Networks (GNNs) and Convolutional Neural Networks (CNNs), to jointly learn visual and semantic-based artistic representations. First, we illustrate the significant advantages of multi-task learning for fine art analysis and argue that it is conceptually a much more appropriate setting in the fine art domain than the single-task alternatives. We further demonstrate that several GNN architectures can outperform strong CNN baselines in a range of fine art analysis tasks, such as style classification, artist attribution, creation period estimation, and tag prediction, while training them requires an order of magnitude less computational time and only a small amount of labeled data. Finally, through extensive experimentation we show that our proposed ArtSAGENet captures and encodes valuable relational dependencies between the artists and the artworks, surpassing the performance of traditional methods that rely solely on the analysis of visual content. Our findings underline a great potential of integrating visual content and semantics for fine art analysis and curation.



قيم البحث

اقرأ أيضاً

Knowledge Distillation (KD) aims at transferring knowledge from a larger well-optimized teacher network to a smaller learnable student network.Existing KD methods have mainly considered two types of knowledge, namely the individual knowledge and the relational knowledge. However, these two types of knowledge are usually modeled independently while the inherent correlations between them are largely ignored. It is critical for sufficient student network learning to integrate both individual knowledge and relational knowledge while reserving their inherent correlation. In this paper, we propose to distill the novel holistic knowledge based on an attributed graph constructed among instances. The holistic knowledge is represented as a unified graph-based embedding by aggregating individual knowledge from relational neighborhood samples with graph neural networks, the student network is learned by distilling the holistic knowledge in a contrastive manner. Extensive experiments and ablation studies are conducted on benchmark datasets, the results demonstrate the effectiveness of the proposed method. The code has been published in https://github.com/wyc-ruiker/HKD
The instance discrimination paradigm has become dominant in unsupervised learning. It always adopts a teacher-student framework, in which the teacher provides embedded knowledge as a supervision signal for the student. The student learns meaningful r epresentations by enforcing instance spatial consistency with the views from the teacher. However, the outputs of the teacher can vary dramatically on the same instance during different training stages, introducing unexpected noise and leading to catastrophic forgetting caused by inconsistent objectives. In this paper, we first integrate instance temporal consistency into current instance discrimination paradigms, and propose a novel and strong algorithm named Temporal Knowledge Consistency (TKC). Specifically, our TKC dynamically ensembles the knowledge of temporal teachers and adaptively selects useful information according to its importance to learning instance temporal consistency. Experimental result shows that TKC can learn better visual representations on both ResNet and AlexNet on linear evaluation protocol while transfer well to downstream tasks. All experiments suggest the good effectiveness and generalization of our method.
We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities using a training set of images annotated with labels belonging to a disjoint set of identities. Our hierarchica l GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level. Unlike fully unsupervised hierarchical clustering, the choice of grouping and complexity criteria stems naturally from supervision in the training set. The resulting method, Hi-LANDER, achieves an average of 54% improvement in F-score and 8% increase in Normalized Mutual Information (NMI) relative to current GNN-based clustering algorithms. Additionally, state-of-the-art GNN-based methods rely on separate models to predict linkage probabilities and node densities as intermediate steps of the clustering process. In contrast, our unified framework achieves a seven-fold decrease in computational cost. We release our training and inference code at https://github.com/dmlc/dgl/tree/master/examples/pytorch/hilander.
Interpretation and explanation of deep models is critical towards wide adoption of systems that rely on them. In this paper, we propose a novel scheme for both interpretation as well as explanation in which, given a pretrained model, we automatically identify internal features relevant for the set of classes considered by the model, without relying on additional annotations. We interpret the model through average visualizations of this reduced set of features. Then, at test time, we explain the network prediction by accompanying the predicted class label with supporting visualizations derived from the identified features. In addition, we propose a method to address the artifacts introduced by stridded operations in deconvNet-based visualizations. Moreover, we introduce an8Flower, a dataset specifically designed for objective quantitative evaluation of methods for visual explanation.Experiments on the MNIST,ILSVRC12,Fashion144k and an8Flower datasets show that our method produces detailed explanations with good coverage of relevant features of the classes of interest
Smart contract vulnerability detection draws extensive attention in recent years due to the substantial losses caused by hacker attacks. Existing efforts for contract security analysis heavily rely on rigid rules defined by experts, which are labor-i ntensive and non-scalable. More importantly, expert-defined rules tend to be error-prone and suffer the inherent risk of being cheated by crafty attackers. Recent researches focus on the symbolic execution and formal analysis of smart contracts for vulnerability detection, yet to achieve a precise and scalable solution. Although several methods have been proposed to detect vulnerabilities in smart contracts, there is still a lack of effort that considers combining expert-defined security patterns with deep neural networks. In this paper, we explore using graph neural networks and expert knowledge for smart contract vulnerability detection. Specifically, we cast the rich control- and data- flow semantics of the source code into a contract graph. To highlight the critical nodes in the graph, we further design a node elimination phase to normalize the graph. Then, we propose a novel temporal message propagation network to extract the graph feature from the normalized graph, and combine the graph feature with designed expert patterns to yield a final detection system. Extensive experiments are conducted on all the smart contracts that have source code in Ethereum and VNT Chain platforms. Empirical results show significant accuracy improvements over the state-of-the-art methods on three types of vulnerabilities, where the detection accuracy of our method reaches 89.15%, 89.02%, and 83.21% for reentrancy, timestamp dependence, and infinite loop vulnerabilities, respectively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا