ﻻ يوجد ملخص باللغة العربية
A high level of physical detail in a molecular model improves its ability to perform high accuracy simulations, but can also significantly affect its complexity and computational cost. In some situations, it is worthwhile to add additional complexity to a model to capture properties of interest; in others, additional complexity is unnecessary and can make simulations computationally infeasible. In this work we demonstrate the use of Bayes factors for molecular model selection, using Monte Carlo sampling techniques to evaluate the evidence for different levels of complexity in the two-centered Lennard-Jones + quadrupole (2CLJQ) fluid model. Examining three levels of nested model complexity, we demonstrate that the use of variable quadrupole and bond length parameters in this model framework is justified only sometimes. We also explore the effect of the Bayesian prior distribution on the Bayes factors, as well as ways to propose meaningful prior distributions. This Bayesian Markov Chain Monte Carlo (MCMC) process is enabled by the use of analytical surrogate models that accurately approximate the physical properties of interest. This work paves the way for further atomistic model selection work via Bayesian inference and surrogate modeling
The universal tendency in scanning probe microscopy (SPM) over the last two decades is to transition from simple 2D imaging to complex detection and spectroscopic imaging modes. The emergence of complex SPM engines brings forth the challenge of relia
Variational Bayes (VB) has been used to facilitate the calculation of the posterior distribution in the context of Bayesian inference of the parameters of nonlinear models from data. Previously an analytical formulation of VB has been derived for non
To build a flexible and interpretable model for document analysis, we develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network. In order to provide scalable p
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to mode
We consider the problem of variable selection in high-dimensional settings with missing observations among the covariates. To address this relatively understudied problem, we propose a new synergistic procedure -- adaptive Bayesian SLOPE -- which eff