ﻻ يوجد ملخص باللغة العربية
Commonsense reasoning aims to incorporate sets of commonsense facts, retrieved from Commonsense Knowledge Graphs (CKG), to draw conclusion about ordinary situations. The dynamic nature of commonsense knowledge postulates models capable of performing multi-hop reasoning over new situations. This feature also results in having large-scale sparse Knowledge Graphs, where such reasoning process is needed to predict relations between new events. However, existing approaches in this area are limited by considering CKGs as a limited set of facts, thus rendering them unfit for reasoning over new unseen situations and events. In this paper, we present a neural-symbolic reasoner, which is capable of reasoning over large-scale dynamic CKGs. The logic rules for reasoning over CKGs are learned during training by our model. In addition to providing interpretable explanation, the learned logic rules help to generalise prediction to newly introduced events. Experimental results on the task of link prediction on CKGs prove the effectiveness of our model by outperforming the state-of-the-art models.
Human reasoning can often be understood as an interplay between two systems: the intuitive and associative (System 1) and the deliberative and logical (System 2). Neural sequence models -- which have been increasingly successful at performing complex
In this paper, we consider the recent trend of evaluating progress on reinforcement learning technology by using text-based environments and games as evaluation environments. This reliance on text brings advances in natural language processing into t
Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subje
Text-based games have emerged as an important test-bed for Reinforcement Learning (RL) research, requiring RL agents to combine grounded language understanding with sequential decision making. In this paper, we examine the problem of infusing RL agen
Recent research efforts aiming to bridge the Neural-Symbolic gap for RDFS reasoning proved empirically that deep learning techniques can be used to learn RDFS inference rules. However, one of their main deficiencies compared to rule-based reasoners i