ﻻ يوجد ملخص باللغة العربية
The rate and pathways of relaxation of a magnetic medium to its equilibrium following excitation with intense and short laser pulses are the key ingredients of ultrafast optical control of spins. Here we study experimentally the evolution of the magnetization and magnetic anisotropy of thin films of a ferromagnetic metal galfenol (Fe$_{0.81}$Ga$_{0.19}$) resulting from excitation with a femtosecond laser pulse. From the temporal evolution of the hysteresis loops we deduce that the magnetization $M_S$ and magnetic anisotropy parameters $K$ recover within a nanosecond, and the ratio between $K$ and $M_S$ satisfies the thermal equilibriums power law in the whole time range spanning from a few picoseconds to 3 nanoseconds. We further use the experimentally obtained relaxation times of $M_S$ and $K$ to analyze the laser-induced precession and demonstrate how they contribute to its frequency evolution at the nanosecond timescale.
The laser-induced precession of magnetization in (Ga,Mn)As samples with different magnetic anisotropy was studied by the time-resolved magneto-optical method. We observed that the dependence of the precession amplitude on the external magnetic field
The integration of ferromagnetic and ferroelectric materials into hybrid heterostructures yields multifunctional systems with improved or novel functionality. We here report on the structural, electronic and magnetic properties of the ferromagnetic d
Laser induced ultrafast demagnetization in ferromagnetic metals was discovered almost 20 years ago, but currently there is still lack of consensus on the microscopic mechanism responsible for the corresponding transfer of angular momentum and energy
We report on the photo-induced precession of the ferromagnetically coupled Mn spins in (Ga,Mn)As, which is observed even with no external magnetic field applied. We concentrate on various experimental aspects of the time-resolved magneto-optical Kerr
La0.67Sr0.33MnO3 (LSMO) thin films under compressive strain have an orthorhombic symmetry with (1-10)o and (001)o in-plane orientations. (The subscript o denotes the orthorhombic symmetry.) Here, we grew LSMO on cubic (LaAlO3)0.3-(Sr2AlTaO6)0.7 (LSAT