ﻻ يوجد ملخص باللغة العربية
Compton scattering imaging using high-energy synchrotron x-rays allows the visualization of the spatio-temporal lithiation state in lithium-ion batteries probed in-operando. Here, we apply this imaging technique to the commercial 18650-type cylindrical lithium-ion battery. Our analysis of the lineshapes of the Compton scattering spectra taken from different electrode layers reveals the emergence of inhomogeneous lithiation patterns during the charge-discharge cycles. Moreover, these patterns exhibit oscillations in time where the dominant period corresponds to the time scale of the charging curve.
Compton scattering is one of the promising probe to quantitate of the Li under in-operando condition, since high-energy X-rays which have high penetration power into the materials are used as incident beam and Compton scattered energy spectrum have s
Non-destructive determination of lithium distribution in a working battery is key for addressing both efficiency and safety issues. Although various techniques have been developed to map the lithium distribution in electrodes, these methods are mostl
Strongly correlated materials that exhibit an insulator-metal transition are key candidates in the search for new computing platforms. Understanding the pathways and timescales underlying the electrically-driven insulator-metal transition is crucial
In view of the long-standing controversy over the reversibility of transition metals in Sn-based alloys as anode for Li-ion batteries, an in situ real-time magnetic monitoring method was used to investigate the evolution of Sn-Co intermetallic during
Electrochemical energy systems rely on particulate porous electrodes to store or convert energies. While the three-dimensional porous structures were introduced to maximize the interfacial area for better overall performance of the system, spatiotemp