ﻻ يوجد ملخص باللغة العربية
Tensions in cosmological parameters measurement motivate a revisit of the effects of instrumental systematics. In this article, we focus on the Pearsons correlation coefficient of the cosmic microwave background temperature and polarization E modes $mathcal{R}_ell^{rm TE}$ which has the property of not being biased by multiplicative instrumental systematics. We build a $mathcal{R}_ell^{rm TE}$-based likelihood for the Planck data, and present the first constraints on $Lambda$CDM parameters from the correlation coefficient. Our results are compatible with parameters derived from a power spectra based likelihood. In particular the value of the Hubble parameter $H_0$ characterizing the expansion of the Universe today, 67.5 $pm$ 1.3 km/s/Mpc, is consistent with the ones inferred from standard CMB analysis. We also discuss the consistency of the Planck correlation coefficient with the one computed from the most recent ACTPol power spectra.
Testing deviations from the $Lambda$CDM model using the Cosmic Microwave Background (CMB) power spectra requires a pristine understanding of instrumental systematics. In this work we discuss the properties of a new observable ${cal R}^{TE}_{ell}$, th
We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping r
We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigat
We show that the f(T) gravitational paradigm, in which gravity is described by an arbitrary function of the torsion scalar, can provide a mechanism for realizing bouncing cosmologies, thereby avoiding the Big Bang singularity. After constructing the
We measure the cross-correlation between galaxy groups constructed from DESI Legacy Imaging Survey DR8 and Planck CMB lensing, over overlapping sky area of 16876 $rm deg^2$. The detections are significant and consistent with the expected signal of th