ﻻ يوجد ملخص باللغة العربية
We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance, and instrumental noise. This analysis makes use of the Planck high-multipole HiLLiPOP likelihood based on angular power spectra, which takes into account systematics from the instrument and foreground residuals directly modelled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power spectrum (TT), allowing constraints that are less sensitive to foreground uncertainties to be derived. For {Lambda}CDM parameters, TE gives very competitive results compared to TT. For basic {Lambda}CDM model extensions (such as AL, {Sigma}m{ u}, or Neff ), it is still limited by the instrumental noise level in the polarization maps.
We demonstrate that for a cosmic variance limited experiment, CMB E polarization alone places stronger constraints on cosmological parameters than CMB temperature. For example, we show that EE can constrain parameters better than TT by up to a factor
We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of ACTPol data at 146 GHz with
Madam is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the
We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 27
We examine the use of the CMBs TE cross correlation power spectrum as a complementary test to detect primordial gravitational waves (PGWs). The first method used is based on the determination of the lowest multipole, $ell_0$, where the TE power spect